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Inference in the Traditional Sensing 
Framework
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Compressive Imaging
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Single Pixel Camera
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Inference on Compressive Measurements
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Inference on Compressive Measurements
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Reconstruction algorithms suffer from 
drawbacks

• Computationally expensive

• Do not produce good results at high compression ratios.

• Various parameters such as sparsity level and sparsifying basis need 
to be known a priori.
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Is Reconstruction Necessary for Inference?

• We posit that one can build effective inference algorithms 
directly on the compressed bits.
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Basis for direct feature extraction

Johnson-Lindenstrauss Lemma [1]
For a given set of Q points in a high dimensional space, certain embeddings
exist that nearly preserve distances between points when mapped to a lower 
dimensional space.

• It has been shown that the mapping f can be a random matrix Φ with 
entries drawn from certain distributions. Such matrices are used in CS.

[1] W.B. Johnson and J. Lindenstrauss. "Extensions of Lipschitz mappings into a Hilbert space." Contemporary       mathematics 26.189-206 
(1984): 1. 
[2] J. Romberg, M. Wakin, "Compressed Sensing: A Tutorial", IEEE Statistical Signal Processing Workshop, 2007.

[2]
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Basis for direct feature extraction

• This fact is employed in the design of the smashed filter for 
compressive classification by Davenport et al. (2007) [3].

• We extend this idea to construct smashed correlation filters 
which are more robust to input variations. 

• As a consequence of the JL lemma, inner products and hence, 
correlations between vectors are also preserved after mapping 
to a lower dimension.
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[3] M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly,and R. G. Baraniuk. “The smashed filter for compressive 
classification and target recognition.” In Electronic Imaging, pages 64980H–64980H. International Society for Optics and Photonics, 2007.



Correlation Filters for Visual Recognition
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Correlation Filters for Visual Recognition

• For a training set {x1, x2,…, x𝑛}, g𝑖 being the desired output for 
image x𝑖, the correlation filter h* is

• g𝑖 = 0 0 … 0 if x𝑖 belongs to the false class.

• g𝑖 = 0 0 …0 1 0 …0 if x𝑖 belongs to the true class, the 1 being 
in the target location.
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Recognition with Correlation Filters –
Oracle Sensing
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Smashed Correlation Filters for Compressive 
Recognition
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Experiments

• Controlled experiments
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1. AMP Database [4]
• 13 subjects with 75 images per subject.

• 25 for training, 50 for testing.

• 64 x 64 images.

[4] http://chenlab.ece.cornell.edu/projects/FaceAuthentication/



Results on AMP Database (64 x 64 images)

• At low noise + high compression ratios; accuracy is comparable to oracle sensing.

• Hadamard measurements are more robust to noise.
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Experiments

• Controlled experiments
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2. NIR Database [5]
• Near infrared images.

• 197 subjects with 20 images per subject.

• 10 for training, 10 for testing.

• 640 x 480 images resized to 256 x 256.

[5]  S. Z. Li, R. Chu, S. Liao, and L. Zhang. Illumination invariant face recognition using near-infrared images. Pattern Analysis and   
Machine Intelligence, IEEE Transactions on, 29(4):627–639, 2007.



Results on NIR Database (256 x 256 images)

• At low noise + high compression ratios; accuracy is comparable to oracle sensing.

• Hadamard measurements are more robust to noise at high compression ratio.
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Experiments on Single Pixel Camera

• New dataset using the SPC 
consists of CS measurements of 
120 facial images of size 128 x 128.

• Images belong to 30 subjects with 
4 images per subject.

• Images are captured using a 
DMD with operating speed of 
22,700 measurements per second. 

• Hadamard matrix was used for 
sensing.
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Experiments on Single Pixel Camera

Compression 
Ratio

No. of
measurements

Recognition
Accuracy (%)

1 (Oracle) 16384 60

10 1638 62.5

50 328 58.33

100 164 53.33

200 82 49.17

Face Recognition Results

• Four training-testing splits were created using the database.
• Each split containing 3 training images and 1 testing image.
• Face recognition accuracy was computed as the average over all the splits.
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Benefits of compressive acquisition in IR

• IR imaging provides illumination invariance.

• Non-visible wavelength sensors are expensive.

• Compressive imaging -- e.g. SPC -- provides a cost-effective 
alternative.

FLIR T620 IR camera
640 x 480 pixels
Price : $ 21,000
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Conclusions and Future Work

• We have shown that compressive sensing technology can be 
employed in a practical inference application by extracting 
features from compressive measurements directly, using 
smashed correlation filters, thus avoiding reconstruction.

• Points to new avenues of research for understanding how to 
solve high-level computer vision problems from computational 
imagers in general.
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Preserving Inner Products – Proof Sketch

Proving the other direction along the same lines gives us the required result.

∀ u, v ∈ Q and ∥u∥ = 1, ∥v∥ = 1,

Using JL lemma,



Compressive Sensing for Inference

Benefits of IR imaging for inference – illumination invariance

Color camera

Near-infrared imager

S. Z. Li, R. Chu, S. Liao, and L. Zhang. “Illumination invariant face recognition using near-infrared images.” Pattern Analysis and Machine Intelligence, IEEE 
Transactions on, 29(4):627–639, 2007.
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Compressive Sensing for Inference

Benefits of IR imaging for inference – illumination invariance

Color camera

Long-wave IR imager

Reviews, Refinements and New Ideas in Face Recognition, July 2011 27



Acquisition Time Can Be Significantly 
Reduced

• Our SPC senses 22.7 measurements/second

• For a 128 x 128 image, sensing time is

Sensing Mechanism % Measurements Required Sensing Time

Sensing all measurements 100% (16384) 0.72 s

Compressive sensing with recovery 20% ~ 0.1 s

Compressive sensing without reconstruction 1% ~ 0.001 s



Maximum Margin Correlation Filters

• Developed by Rodriguez et al. (2013)
• Combines the strengths of correlation filters and SVM.
• Optimize for 

• High peak at target location.
• Maximum margin (SVM objective)

• Solve optimization problem of the form:

• Can be reduced to a single optimization problem that can be solved on any 
standard SVM solver.

A. Rodriguez, V. N. Boddeti, B. V. Kumar, and A. Mahalanobis. Maximum margin correlation filter: A new approach for localization
and classification. IEEE Transactions on Image Processing, 22(2):631–643, 2013. 30



Feature extraction from correlation 
planes
• Each correlation plane is divided into non-overlapping blocks 

and the PSR and peak values of each block is extracted.

• The peak and PSR for the entire correlation plane are also 
extracted.

• All these values are concatenated to form the feature vector that 
is input to the SVMs. 




