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Computational Framework for Predicting Activity

from a Single Image

e Modeling action segments
2p(t+1) = Agzg(t) + vy (1), vg(t) ~ N(0,E)
Yo (t) = Coze(t) + wy(t), we(t) ~ N(0,0)
0] = [C;,(C¢A¢)T,...,(C¢A$—1)T]
C* (%, Q) = p — tr(Q %O Q;)
e Density estimation on the Grassmannian
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e Statistical inference : mode estimation
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Application: Motion Prediction from a Single Image

e Given a single frame, we can predict the most possible action segment
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Application: Single-lmage Semi-supervised Action
Recognition
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Poses added by the proposed method differ from the labeled ones, improving training data diversity.
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