UNROLLED PROJECTED GRADIENT DESCENT FOR MULTI-SPECTRAL IMAGE FUSION
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Introduction
» Multi-spectral (MS) image fusion

Proposed Method Experimental Results
» Unrolled PGD » Datasets, training and testing protocol

- We propose to unroll the PGD iterations for a predetermined | - \We consider synthesized MS images of 17 discrete channels, including

\ number of iterations and use a trained neural network as the panchromatic, RGB, infra-red, and short-wave infra-red channels using
projection operator. publicly available NASA AVIRIS database.
Low-resolution - _ *  The convolutional neural network (CNN) is trained to map to - The CNN in each stage consists of 4 convolutional layers. The
M5 images >._. AU the space of high resolution images using Euclidean loss. networks are trained to perform block-wise image fusion with a block
Rl L - Note that the input images are first up-sampled using bicubic

Size of 32x32.

The training data set contains 138 pairs of high-resolution aerial multi-
spectral Images and their corresponding low-resolution measurements.
The networks are trained to super-resolve from 128x128 to 256x256.

interpolation. e

High-Resolution MS Images Low resolution interpolated

High-resolution MS Images:y Step 1: Gradient Descent Step 2: Projection - The test set consists of 4 aerial MS images. At test time, the networks
PAN image N super-resolve from 256x256 to 512x512.
4 Learnin O
g
rate o
- There Is a fundamental trade-off between spectral resolution Forward operator . ( Outout of » Results
and spatial resolution. s . x 9 CNN J_’Cu“rrgr’]to - We compare with two learning based baselines — Shrinkage Fields

 Our goal Is to achieve high resolution in both spectral and 'SALelsrﬁaugfn \ teration: x**! [2] and DeepCASD [3]. Our results yield higher PSNRs and are

spatial domains by fusing the information in the images. sharper in quality.

_ _ _ _ Output from previous o | e |
o We propose a hybrld model/data_drlven approach Insplred |terat|on Xk Bicubic Interpolation Shnnkag_e’_flelds”v Deep CASD PGDCNN : A=l _ PGDCNN:AEIear-nefi |
by well studied signal processing algorithms.
= Using A=

» Projected gradient descent (PGD) for | -
linear inverse problems

* The given MS image y can be modeled as measurements
of unknown high-resolution MS x through a blurring and
down-sampling operator A

As A Is unknown, we can make a simplifying assumption that
A Is equal to identity:.

* The linear inversion problem reduces to the problem of
denoising and the PGD algorithm can be solved in one step.
This makes the algorithm equivalent to [1].
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Bicubic Interpolation Shrin kage Fields Deep CASD PGDCNN : A=l PGDCNN : A is learned Ground Truth

y = AX = Learning A jointly with the CNN

* The fusion problem can be posed a constrained
optimization problem, where the constraint set Is the set of
high-resolution images.

»  We also propose jointly learning the blurring operator A,
jointly with the projection operator.

»  We assume that the blurring is uniform over the entire
Image. Thus, we can model A using a single convolutional
kernel K, of size SxS (we use S = 9 In our experiments).
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1
X = argmin §Hy — Ax||5 st.xeC

. : Unrolled PGD
- The optimization problem can be solved using projected * We also enforce additional constraints on K, so as to Image Name | Bicubic | Shrinkage Fields | DeepCASD [ — L(reduces 0 [1] A is learned

: : : umber of Layers Number of Iterations

gradient descent make It a valid blurring operator. ; e 55 , . 3
Moffer 32.24 3421 34.53 3744 | 3829 | 3746 | 3759 | 3852 | 38.17
ki1 L T o 2 oo 0.4788 0.6981 0.7185 | 0.9710 | 0.9768 | 0.9729 | 0.9706 | 0.9778 | 0.9776
W T X 4+ oA (y — Ax ) Ka = Kp + Kji, s.t. 2 2 Ka (?,,j) — Cambria 35.32 3751 37.62 3783 | 3891 | 38.71 | 37.99 | 3891 | 39.33
ot 1 k1 i—1 i—1 APHA e 0 5887 0.7941 0.7987 | 0.9734 | 0.9734 | 0.9696 | 0.9775 | 0.9765 | 0.9771
_ —+J= . 32.44 3433 3452 36.88 | 37.56 | 36.82 | 37.95 | 3856 | 39.02
X = llc (W ) oo oo Cuprite 0.5060 0.7437 0.7616 | 0.9750 | 0.9842 | 0.9823 | 0.9794 | 0.9837 | 0.9840
Ka (?’a J) > 0,Vi,5 € {1-,= o, S } 27.96 30.39 30.50 36.27 | 3738 | 37.28 | 3642 | 37.79 | 37.77

: ' ' Los Angeles

- However, usually both the constraint set and the projection ) ) i L K | dand K. 0.4888 0.7628 0.7761 | 0.9702 | 0.9755 | 0.9760 | 0.9712 | 0.9777 | 0.9790
- where the coefficients of kerne are learned an IS 31.99 3411 34.29 37.11 | 38.03 | 3757 | 3749 | 3845 | 3857
operator cannot be expressed analytically. B | Mean 0.5156 0.7497 0.7637 | 0.9760 | 0.9775 | 0.9752 | 0.9746 | 0.9789 | 0.9794

the identity filter.
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