

Proposed Method Introduction > Unrolled PGD We propose to unroll the PGD iterations for a predetermined number of iterations and use a trained neural network as the projection operator. • The convolutional neural network (CNN) is trained to map to Low-resolution Fusion MS images the space of high resolution images using Euclidean loss. Algorithm Note that the input images are first up-sampled using bicubic interpolation. High-Resolution MS Images Low resolution interpolated MS images: y^k Step 1: Gradient Descent Step 2: Projection **High-resolution** PAN image Learning rate α There is a fundamental trade-off between spectral resolution Forward operator Output of and spatial resolution. -> current High resolution Our goal is to achieve high resolution in both spectral and PAN image spatial domains by fusing the information in the images. Output from previous We propose a hybrid model/data-driven approach inspired iteration: x^k by well studied signal processing algorithms. • Using A = IAs A is unknown, we can make a simplifying assumption that A is equal to identity. • The linear inversion problem reduces to the problem of The given MS image y can be modeled as measurements denoising and the PGD algorithm can be solved in one step. of unknown high-resolution MS x through a blurring and This makes the algorithm equivalent to [1]. down-sampling operator A Learning A jointly with the CNN The fusion problem can be posed a constrained We also propose jointly learning the blurring operator A, optimization problem, where the constraint set is the set of jointly with the projection operator. high-resolution images. We assume that the blurring is uniform over the entire image. Thus, we can model A using a single convolutional C kernel $\mathbf{K}_{\mathbf{A}}$ of size S×S (we use S = 9 in our experiments). We also enforce additional constraints on $\mathbf{K}_{\mathbf{A}}$ so as to The optimization problem can be solved using projected make it a valid blurring operator. gradient descent. $\mathbf{K}_{\mathbf{A}} = \mathbf{K}_{\mathbf{B}} + \mathbf{K}_{\mathbf{I}}, \text{ s.t. } \sum \sum \mathbf{K}_{\mathbf{A}}(i, j) = 1$ i=1 j=1 $\mathbf{K}_{\mathbf{A}}(i,j) \ge 0, \forall i,j \in \{1,\ldots,S\}$

> Multi-spectral (MS) image fusion Projected gradient descent (PGD) for linear inverse problems • However, usually both the constraint set and the projection

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

$$\mathbf{x}^* = \operatorname{argmin} \frac{1}{2} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 \text{ s.t. } \mathbf{x} \in$$

$$\mathbf{w}^{k+1} = \mathbf{x}^{k} + \alpha \mathbf{A}^{T} (\mathbf{y} - \mathbf{A} \mathbf{x}^{k})$$
$$\mathbf{x}^{k+1} = \Pi_{\mathcal{C}}(\mathbf{w}^{k+1})$$

operator cannot be expressed analytically.

*SL performed this work while at MERL.

UNROLLED PROJECTED GRADIENT DESCENT FOR MULTI-SPECTRAL IMAGE FUSION Suhas Lohit¹, Dehong Liu², Hassan Mansour², and Petros Boufounos² ¹Arizona State University, Tempe, AZ, USA

²Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

where the coefficients of kernel $\mathbf{K}_{\mathbf{B}}$ are learned and $\mathbf{K}_{\mathbf{I}}$ is the identity filter.

[1] Yancong Wei, Qiangqiang Yuan, Huanfeng Shen, and Liangpei Zhang, "Boosting the accuracy of multispectral image pansharpening by learning a deep residual network," IEEE GRSL, 2017 [2] Uwe Schmidt and Stefan Roth, "Shrinkage fields for effective image restoration," in Proc. IEEE CVPR, 2014 [3] Bihan Wen, Ulugbek Kamilov, Dehong Liu, Hassan Mansour, and Petros T Boufounos, "DeepCASD: An end-to-end approach for multi-spectural image super-resolution," in Proc. IEEE ICASSP, 2018

Experimental Results

> Datasets, training and testing protocol

- publicly available NASA AVIRIS database.
- size of 32×32 .
- super-resolve from 256×256 to 512×512.

Results

sharper in quality.

Image Name	Bicubic	Shrinkage Fields	DeepCASD	Unrolled PGD					
				$\mathbf{A} = \mathbf{I}$ (reduces to [1])			A is learned		
				Number of Layers			Number of Iterations		
				4	12	20	1	3	5
Moffett	32.24	34.21	34.53	37.44	38.29	37.46	37.59	38.52	38.17
	0.4788	0.6981	0.7185	0.9710	0.9768	0.9729	0.9706	0.9778	0.9776
Cambria Fire	35.32	37.51	37.62	37.83	38.91	38.71	37.99	38.91	39.33
	0.5887	0.7941	0.7987	0.9734	0.9734	0.9696	0.9775	0.9765	0.9771
Cuprite	32.44	34.33	34.52	36.88	37.56	36.82	37.95	38.56	39.02
	0.5060	0.7437	0.7616	0.9750	0.9842	0.9823	0.9794	0.9837	0.9840
Los Angeles	27.96	30.39	30.50	36.27	37.38	37.28	36.42	37.79	37.77
	0.4888	0.7628	0.7761	0.9702	0.9755	0.9760	0.9712	0.9777	0.9790
Mean	31.99	34.11	34.29	37.11	38.03	37.57	37.49	38.45	38.57
	0.5156	0.7497	0.7637	0.9760	0.9775	0.9752	0.9746	0.9789	0.9794

We consider synthesized MS images of 17 discrete channels, including panchromatic, RGB, infra-red, and short-wave infra-red channels using

The CNN in each stage consists of 4 convolutional layers. The networks are trained to perform block-wise image fusion with a block

The training data set contains 138 pairs of high-resolution aerial multispectral images and their corresponding low-resolution measurements. The networks are trained to super-resolve from 128×128 to 256×256. The test set consists of 4 aerial MS images. At test time, the networks

We compare with two learning based baselines – Shrinkage Fields [2] and DeepCASD [3]. Our results yield higher PSNRs and are