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ABSTRACT

For time-series classification and retrieval applications, an im-
portant requirement is to develop representations/metrics that
are robust to re-parametrization of the time-axis. Temporal
re-parametrization as a model can account for variability in
the underlying generative process, sampling rate variations, or
plain temporal mis-alignment. In this paper, we extend prior
work in disentangling latent spaces of autoencoding models,
to design a novel architecture to learn rate-invariant latent
codes in a completely unsupervised fashion. Unlike conven-
tional neural network architectures, this method allows to ex-
plicitly disentangle temporal parameters in the form of order-
preserving diffeomorphisms with respect to a learnable tem-
plate. This makes the latent space more easily interpretable.
We show the efficacy of our approach on a synthetic dataset
and a real dataset for hand action-recognition.

Index Terms— Rate-invariance, time-series, deep learn-
ing, neural networks, autoencoder

1. INTRODUCTION

A classic challenge in the modeling of time-series data is the
need to account for temporal rate variation, or mis-alignment.
Previous studies [1, 2, 3] have focused on developing met-
rics that are invariant to these nuisance factors, such that the
similarity between two time-series remains unchanged even
when each of them are subject to different rate variations.
However, computing these metrics involves the computation-
ally expensive step of solving for the right correspondence
or alignment across both the time-series. They also rely on
a template or a canonical time-series, that is either provided
or estimated, against which a given time-series can be com-
pared. As a result, such techniques do not scale well either to
long time-series, or to large datasets. While recent deep learn-
ing based time-series modeling techniques such as LSTMs,
1D CNNs account for rate variations mostly in a supervised
manner [4, 5], where they exploit label information to learn
class-discriminative representations.

In this paper, we employ ideas from recent advances in
unsupervised learning [6] to build rate-invariant autoencoders
(see Fig.1) that are trained end-to-end to separate attributes
related to elastic rate variation of a time-series, from all of its
other information. Such a strategy scales well to large datasets

or time-series, and at test time, can obtain rate-invariant trans-
formations by just a feed-forward operation in the network,
rather than solving an expensive iterative optimization prob-
lem. By design, the proposed autoencoder does not require
an explicit template, and a rate-invariant metric can be ob-
tained using a combination of the Euclidean norm in the rate-
factored part of the latent space.

We achieve rate invariance by using a structured and more
interpretable latent space, where we allocate a fixed set of
dimensions to explicitly model rate variations using warp-
ing functions and a differentiable warping layer. Using such
structured latent codes and layers enables us to perform rate-
invariant autoencoding in a completely unsupervised way un-
like comparable earlier works [7].
Contributions:
• We propose an unsupervised data-driven autoencoder

(AE) framework to learn rate-invariant representations
of time-series. At test time, factoring out rate informa-
tion is achieved with a simple feed-forward operation.
• The proposed structured latent space explicitly ac-

counts for rate variations, and as a result disentangles
it from the core content of the signal.
• A by-product of the autoencoder is its ability to obtain

class discriminative representations of time-series lead-
ing to improved predictive performance in many down-
stream machine learning applications.

2. RELATED WORK

Disentangled latent representations: Achieving disentan-
gled latent representations is of great interest in unsuper-
vised representation learning, by which we mean each vari-
able/chunks of variables in the latent space have a semantic
meaning associated with them. Kulkarni et. al [7] propose
a supervised method to achieve interpretable latent codes,
by tuning one latent dimension at a time using supervised
variations at the input. β-VAE [8] and Mixing autoencoders
[9] propose successful disentanglement strategies, however
they are not designed to make the latent codes interpretable.
Shu et al. [6] propose Deforming Autoencoders to achieve
disentagling spatial transforms in images in an interpretable
manner. Our work here for rate-invariant features for time-
series is inspired by this paper.
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Fig. 1: Rate-invariant autoencoder. The figure shows an autoencoder architecture to disentangle rate variations from re-
maining information in the signal. The encoder, along with the constraint satisfaction layers, outputs two chunks of the latent
space γ and z. The decoder takes in only z and outputs a canonical representation of the signal, which is then warped with a
differentiable layer with γ to produce the reconstruction.

Temporal alignment and rate-invariance: For time-
series, temporal alignment of sequences has been tradition-
ally addressed using DTW [1], and more recently using using
methods like SRVF [10] and Soft-DTW [2]. However, these
alignment methods require a template to perform the align-
ment, and cannot naturally handle multiple templates for dif-
ferent classes. In data-driven methods, Tallec and Ollivier [4]
show that LSTMs can learn to model rate variations. Jader-
berg at. al [11] and Lohit et al. [5] propose frameworks to
perform template-free alignment of images and time-series
respectively, utilizing class labels. In contrast, our method
produces template-free alignment of time-series in an unsu-
pervised approach using an autoencoder framework.

3. UNSUPERVISED RATE DISENTANGLEMENT
In this section, first we describe the basic mathematical nota-
tion needed for modeling rate variations of time-series. Let
α(t) ∈ Rn be a single parameter curve that denotes a time-
series signal. Let β(t) denote a resampling of α(t) given by
β = α ◦ γ. γ ∈ Γ is called the warping function which is
used to mathematically model rate variations between time-
series i.e., we consider α and β to be the same signal, only
differing in the execution rate. For a 1-differentiable func-
tion γ, defined on [0, 1], to be a warping function, it needs
to be in the set of order-preserving diffeomorphisms Γ [10]:
∀γ ∈ Γ, γ(0) = 0, γ(1) = 1 and γ(t1) < γ(t2) if t1 < t2.
These properties ensure that γ is a true time warping func-
tion. The order preserving property is important for appli-
cations like action recognition where order of frames/poses
contains information. We denote the first derivative of γ by
γ̇ and we can easily see that γ(t) =

∫ t

0
γ̇(t)dt,

∫ 1

0
γ̇(t)dt =

γ(1)− γ(0) = 1.
The above property along with the monotonicity of γ im-

plies that γ̇ has the same properties as a probability density
function (PDF) and γ, that of a cumulative density function
(CDF). For discretized signals, these properties become:

γ(t) =

t∑
i=0

γ̇(i) and
1

T

T∑
i=0

γ̇(i) = 1. (1)

Now we describe the proposed method to disentangle rate

variations from the time-series in an unsupervised fashion us-
ing neural networks, which we call a rate-invariant autoen-
coder. Fig. 1 represents the rate-invariant AE architecture.
The signal is first fed into an encoder whose output is the
latent space representation which consists of two parts: rate
parameters which we enforce to be represented in the form of
a warping function γ, and the remaining information in the
signal encoded into z. Next, only z is fed into the decoder.
The output of the decoder x̃ is ideally equal to the input sig-
nal with the rate variations completely factored out. Finally, a
temporal warping layer [5] is used to warp the rate-invariant
decoded representation using the estimated warping function
to reconstruct the original signal. The network is trained end-
to-end using the mean squared error (MSE) as the loss func-
tion. More formally, once the network is trained, for two input
signals x1 and x2, if ∃γ∗ ∈ Γ s.t. x2 = x1 ◦ γ∗, then ideally,
the respective rate parameters generated are γ1 and γ2 ∈ Γ,
and the outputs of the decoder are x̃1, x̃2 such that x̃1 = x̃2,
and x̃1 ◦ γ1 = x1 and x̃2 ◦ γ2 = x2.

The temporal warping layer takes as input both x̃ and the
rate parameters γ in order to reconstruct the original signal.
However, the raw output of the encoder, denoted by v, does
not automatically satisfy the constraints of a warping func-
tion, and hence, we employ the following constraint satisfac-
tion layers which convert an arbitrary unconstrained vector v
into a warping function γ.

Constraint satisfaction: The output of the encoder v is
first converted into a density function: γ̇ = v

||v||�
v

||v|| , where
� refers to element-wise multiplication. Then, γ is computed
from γ̇ using summation as in (1). These transformations en-
sure that the output of the encoder is a warping function. Mote
that these transformations are differentiable, making efficient
backpropagation feasible.

Temporal warping layer: We use the temporal warping
layer proposed by Lohit et al. [5] to apply the rate parameters
predicted by the encoder to the predicted rate-factored repre-
sentation. The warping layer warps the time axis by perform-
ing a simple linear interpolation which is a differentiable op-
eration enabling standard backpropagation to be used through
the warping layer. The expression for gradients of the warp-
ing layer are derived from equations (5) & (6) of [5].



4. EXPERIMENTAL RESULTS

We now describe experimental results on two challenging
datasets demonstrating disentanglement of rate parameters in
a completely unsupervised manner.

4.1. Synthetic dataset for class-selective rate-invariance

In this experiment, we synthetically generate a dataset with
two classes of functions: Gaussian functions and sine waves
with 100 samples in time, with randomly varying amplitudes
and further distorted with random time-warps. Each class has
4000 training examples and 1000 test samples. Fig. 2(a)
& (b) show the entire training set before time-warping, and
the classes are aligned. To illustrate rate-disentanglement and
time-series alignment, we introduce random rate variations
into both the classes of the dataset as in Figs. 2(c) and (d).

(a) (b)

(c) (d)

(e) (f)

Fig. 2: (a) and (b) represent the clean version of the signal
belonging to the two classes. (c) and (d) represent the same
signals as (a) and (b) but with rate variations. (e) and (f) rep-
resent the canonical rate-invariant representations learned by
the decoder for the two classes of signals in (a) and (b).

Network architecture and training: The encoder and
decoder are both comprised of temporal convolutional (TC)
layers for feature extraction and fully connected layers (FC)
to map to and from the latent space. Both consist of three

TC layers with a filter size of 16 and 32 filters in each layer
and 1 FC layer. tanh non-linearity is employed. The first
T parameters contain the disentangled warping function es-
timate γ, where T is equal to the length of the time-series.
The remaining d dimensions encode the remaining signal in-
formation. Thus, the latent-space is of dimension T + d. We
choose T = 100, d = 5.

Results: As shown in Figs. 2 (e) and (f), we observe un-
supervised disentanglement of rate and semantic content of
the signal. We can easily see that the decoder learns to undo
the rate variations and align the two classes separately. It is in-
teresting to note that class-dependent aligned representations
are learned even though no label information is provided.

4.2. ICL First-Person Hand Action Dataset

Dataset details: The ICL dataset [12] is a collection of 3D
hand pose sequences and RGB-D videos of 6 subjects which
capture common actions such as “pour milk” and “read pa-
per”. The 3D hand pose was captured using a Mocap system
which accurately captures the position of each of the 21 joints
of the hand. For our experiments, we only use the 3D hand-
pose sequences. We use the train-test splits suggested by the
authors i.e. data from subjects 1,3,4 for training and the rest
for testing. The training set contains 600 sequences and the
test set contains 575 sequences. To make all the sequences of
the same length, they are uniformly sampled such that they
all contain 50 samples. Zero-padding is used for sequences
smaller than 50 samples. The dataset is normalized such that
the wrist position is at the origin.
Introducing rate variations: The ICL hand action dataset
does not have sufficient rate variations for the purpose of this
experiment. Therefore, we introduce rate variations into the
dataset as follows. First, we set the sequence length to 100
such that the original sequence is centered between time-steps
25 and 75, and the remaining values are zero. Rate variations
are induced into this data by introducing random affine warps
which take the form γ(t) = at + b, t = 25 to 75. We use
a ∈ [0.75, 1.25] and b ∈ {0, 1, ..., 49}.
Network variants and training protocol: We train autoen-
coders on this dataset to learn latent codes that are useful in
downstream tasks like classification. For the unsupervised
settings, we first train two variants of autoencoders (a) vanilla
AE with fixed latent space dimension (d = 10) (b) proposed
rate-invariant AE with latent dimension T + d, where the T
parameters encode the rate information in the form of the
warping function γ and remaining dimensions encode the re-
maining information in the action sequence. In our case, T =
100, and we choose d = 7. Despite the apparent large differ-
ence in overall latent-space dimensions between the vanilla
autoencoder and the proposed one (10 vs. 107), all our com-
parisons include only the d dimensional parts from the two
(10 vs. 7). The encoder consists of 3 TC layers with filter size
16 and 64 feature maps, and 1 FC layer.



(a) End-to-end classifier (b) Vanilla autoencoder (c) Rate-invariant autoencoder (proposed)

Fig. 3: (a) t-SNE plot of features from the penultimate layer of the end-to-end classifier. (b) t-SNE plot of the full latent space
of a vanilla AE (b) t-SNE plot of the rate-invariant latent space using the proposed rate-invariant AE. We can clearly see that
the proposed frameowrk improves the class-discriminative ability of the latent space.

We use the task of action recognition to quantify the effi-
cacy of the proposed method. We compute the latent repre-
sentations for both vanilla AE and the rate-invariant AE (only
the 7-dimensional rate-invariant part of the latent space) and
train classifiers on top of them. The classifier is composed of
3 FC layers with 80 hidden units in each of them. As a base-
line, we train a classifier end-to-end on the action sequences
which is made of 1 TC layer with filter size of 8 and 64 fil-
ters and 1 FC layer. We use Adam optimizer [13] to train all
networks.

Results: In Table 1, we show classification accuracies on the
test dataset. We observe that rate-invariant latent space fea-
tures from the proposed method outperform the latent repre-
sentations from a vanilla AE by a large margin of 33 percent-
age points. More interestingly, we even see a boost of nearly
4 percentage points compared to a neural network classifier
trained end-to-end with full supervision.

In Figure 3 we show t-SNE [14] embeddings of the fea-
ture/latent representations to visualize the class-discriminative
ability of the latent space. For the baseline end-to-end classi-
fier, we use the features of the penultimate layer. For vanilla
AE, we plot the t-SNE of the entire latent space. For the
proposed method, we plot the t-SNE of the rate-invariant part
of the latent space i.e. v. The t-SNE plots are colored with
respect to classes and there are 45 classes. From Figure 3,
we can notice that unsupervised training using our approach
leads to better clustering of the features compared to the fea-
tures learned by a classifier or features learned by a regular
autoencoder.

The corresponding clustering metrics are illustrated in Ta-
ble 2. We use three metrics to evaluate clustering: purity
[15], homogeneity and completeness [16]. We can see that
for all three metrics, the proposed method outperforms the
other two. These results clearly demonstrate that the proposed
architecture to achieve rate-invariance is superior to the base-
lines considered.

Features for classification Accuracy
End-to-end classification 72.86%
Latent codes from vanilla AE 43.66%
Latent codes from rate-invariant AE 76.60%

Table 1: Classification accuracies on the affine-warped ICL
test set. It can be seen that the proposed rate-invariant AE
method outperforms the baselines by a large margin.

Affine-warped
ICL dataset Purity Homogeneity Completeness

End-to-end
classification 0.310 0.504 0.517

Vanilla AE 0.220 0.420 0.429
Rate-invariant
AE 0.435 0.590 0.611

Table 2: Comparison of clusters obtained using different fea-
tures of the affine-warped ICL test set. It can be seen that
the clusters obtained by the proposed rate-invariant AE latent-
space outperforms the baselines.

5. CONCLUSION AND FUTURE WORK
In this paper we present an autoencoder framework to disen-
tangle rate parameters for time-series in a completely unsu-
pervised fashion. We achieve rate-invariant representations
using a structured latent space and a temporal warping layer.
Furthermore, the decoder learns class-dependent canonical
representations with respect to which the rate parameters in
latent space are learned. As future work, we wish to ex-
tend these ideas to learn deformation-invariant latent spaces
in other generative modeling techniques such as variational
autoencoders and generative adversarial networks. We have
shown that, compared to either purely model-based or purely
data-driven methods, the combination of theoretically well-
motivated mathematical models for nuisance factors and pow-
erful data-driven models in the form of neural networks can
lead to more efficient techniques, and more discriminative and
interpretable representations.
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