Learning Invariant Riemannian Geometric Representations Using Deep Nets
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Manifold-Aware Regression Two Approaches for Neural Networks Grassmann Geometry

* The Grassmann manifold is the set of

* Manifold-valued data representations in computer * For “simple” manifolds, we can employ Method 1: Method 2: | |
vision - invariant representations (illumination-invariant the neural net to directly map to the oaress o Tanaont Space all d-dimensional subspaces of R™
subspaces), task-determined manifold representations manifold using the geodesic distance as Input Input Gna = {[U]},[U] = {UQ|U € R™*¢,
(saliency detection, classification) the loss function. Manifold constraints J, l UTU =1, Q is orthogonal}
* We are interested in the problem of learning a non-linear can be satistied exactly using | |
function to regress a manifold-valued response, given a differentiable layers Neural Network Neural Network * The tangent vectors at the identity
vector-valued input e.g. (n-1)-sphere matrix have nice structure
. N 04 A dX(n—d
fiRT =M * Learn the network to map to the tangent X = [—AT On_d} A e R
* Prior work uses hand-crafted features e.g. Fletcher [1], space of the manifold. The Euclidean loss o
Banerijee et al. [2] on the tangent space can be used as the * The geode§1c c%hstance between two
* We use a neural network architecture as the features are loss function. For Grassmann and Stiefel subspaces is given by
learned directly from data manifolds, tangent space constraints are ¢ ,
* However, using a neural network introduces new easier to satisty. Exponential map is used De (Ui, Us) = \ Z ;
challenges : loss function and manifold constraints to get the desired point on manifold

W cos( — svd UTUQ

Experiments on Grassmann Manifold: Smgle Face to Illumination Subspace Ongomg/Future Work

* We design an ill-posed problem for
illustration of regression on the

. . , on Grassmannian using E T : . . B
Grassmannian: Given a face image of an L GrassANNIan using L S S MRS

unseen subject under unknown D = 1.6694 Dg = 0.7006

illumination, predict the illumination . I
Mm m ME ?ﬁ Multi-classification can be posed as

subspace Lewe = [|U = Ul|F
regression on the unit hypersphere

o - - D = 1.2998 D = 0.7238
. . . . . . . . . . . . . . . . Mapping via the tangent using the square-root parameterization
space with Euclidean loss - : : - A= 3 o Toibs .
I SEENNEEE e spaceana o LSS p SIS MIBETRS - lnital experiments on MNIST and
HENEEAEE D NEEEEE ol CIFAR-10 indicate the geodesic loss on
using exponential map on the sphere performs better than the

EEEEEEEE EEEEEBEEEE thenetwork oufcput to find GrassmannNet-TS cross-entropy loss
. . . . . . . . . . . . . . . . the corresponding Subspace * Extending to other interesting

° 1 . 1 1 Input Ground-truth PCs Output of baseline n/w Output of GrassmannNet-TS . . . .
Baseline: Direct regression P p P » Experiments on image relighting and

illumination-invariant single-image face
recognition show promising results
* Experiments on the unit hypersphere:

(ignoring geometry)

EEEEEEREE EEEEEEREE subspace Dimension Baseline P.C.A of Frechet Mean manifolds such as SPDs for applications
EEEEEENE EEREEREE o -1A- Al Haiming st in diffusion tensor imaging

. , , 3 0.6613 0.3991 0.3953 * bxtend current 1deas to multiple tangent
11 . Sl ENE . AEEAE v experiment with two spaces for data with more variance on

PCA . PCA poles —Frechet mean and 4 1.0997 0.5489 0.5913 the manifold
PCA of entire training set
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