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Two Approaches for Neural Networks

Experiments on Grassmann Manifold: Single Face to Illumination Subspace Ongoing/Future Work

●  Manifold-valued data representations in computer 
vision - invariant representations (illumination-invariant 
subspaces),  task-determined manifold representations 
(saliency detection, classification)

• We are interested in the problem of learning a non-linear 
function to regress a manifold-valued response, given a 
vector-valued input

• Prior work uses hand-crafted features e.g. Fletcher [1], 
Banerjee et al. [2] 

• We use a neural network architecture as the features are 
learned directly from data

• However, using a neural network introduces new 
challenges : loss function and manifold constraints

• For “simple” manifolds, we can employ 
the neural net to directly map to the 
manifold using the geodesic distance as 
the loss function. Manifold constraints 
can be satisfied exactly using 
differentiable layers                                       
e.g. (n-1)-sphere  

• Learn the network to map to the tangent 
space of the manifold. The Euclidean loss 
on the tangent space can be used as the 
loss function. For Grassmann and Stiefel 
manifolds, tangent space constraints are 
easier to satisfy. Exponential map is used 
to get the desired point on manifold

[1] Fletcher, Thomas, “Geodesic regression on Riemannian manifolds.” Proc. 3Rd Intl. Workshop on Math. Foundations of Comp. Anatomy – Geometrical and Statistical Methods for Modelling Biological Shape Variability. 2011
[2] Banerjee Momami et al., “Non-linear regression on Riemannian manifolds and its application to neuro-image analysis.” Intl. Conf. On Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 2015

Manifold-Aware Regression

● We design an ill-posed problem for 
illustration of regression on the 
Grassmannian: Given a face image of an 
unseen subject under unknown 
illumination, predict the illumination 
subspace

• Baseline: Direct regression 
on Grassmannian using 
Euclidean loss function 
(ignoring geometry)

• Mapping via the tangent 
space with Euclidean loss 
on the tangent space and 
using exponential map on 
the network output to find 
the corresponding 
subspace

• We experiment with two 
poles  – Frechet mean and 
PCA of entire training set

• Experiments on image relighting and 
illumination-invariant single-image face 
recognition show promising results

• Experiments on the unit hypersphere: 
Multi-classification can be posed as 
regression on the unit hypersphere 
using the square-root parameterization

• Initial experiments on MNIST and 
CIFAR-10 indicate the geodesic loss on 
the sphere performs  better than the 
cross-entropy loss

• Extending to other interesting 
manifolds such as SPDs for applications 
in diffusion tensor imaging

• Extend current ideas to multiple tangent 
spaces for data with more variance on 
the manifold

Subspace 
Dimension

Baseline

GrassmannNet-TS

PCA of 
training set Frechet Mean

3 0.6613 0.3991 0.3953

4 1.0997 0.5489 0.5913

5 1.4558 0.8694 0.6174

PCA

Grassmann Geometry
• The Grassmann manifold is the set of 

all d-dimensional subspaces of RN

• The tangent vectors at the identity 
matrix have nice structure

• The geodesic distance between two 
subspaces is given by

PCA
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