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Invariants in Computer Vision and Non-Euclidean 
Constraints

●Non-Euclidean constraints arise often in computer vision because of 
invariance requirements (e.g. illumination, deformation etc.) and the task 
at hand (e.g. saliency detection)

●These non-Euclidean constraints mean that conventional vector space 
machine learning does not apply directly.

●Several invariance constraints are expressible in the language of 
Riemannian geometry.



Measuring invariances in deep-networks
“Measuring Invariances in Deep Networks”, Ian J. Goodfellow, Quoc V. Le, 

Andrew M. Saxe, Honglak Lee, Andrew Y. Ng, NIPS 2009.

“A surprising finding in our experiments with visual data is that stacked autoencoders 
yield only modest improvements in invariance as depth increases.”

“Another interesting finding is that by incorporating sparsity, networks can become more 
invariant.”

“….. aproaches to achieving invariance such as max-pooling and weight- sharing…. not 
obvious how to extend these explicit strategies to become invariant to more intricate 

transformations like large-angle out-of-plane rotations and complex illumination 
changes….”



Some examples from past work 



Illumination invariance
● Current approach: data 

augmentation by sampling 
from PCA space of RGB pixels 
in training set. 

■ A.Krizhevsky, I. Sutskever and 
G.E.Hinton, “Imagenet 
classification with deep 
convolutional neural networks”, In 
Advances in neural information 
processing systems 2012 (pp. 1097-
1105).

● Several known results 
relating to illumination 
modeling in natural images. 
How do we leverage these?

What Is the Set of Images of an Object under All 
Possible Illumination Conditions?  P. N. 

Belhumeur, and D. J. Kriegman, IJCV 1998.



Blur invariance

“Understanding How Image Quality Affects Deep 
Neural Networks”, Samuel Dodge, Lina Karam, 
Proceedings of the Conference on the Quality of 

Multimedia Experience (QoMEX), June 6-8, 2016

Image 1

Image 2

Under Gaussian blur, orbits of images are straight 
lines in log-Fourier space

Zhengwu Zhang, Eric Klassen, Pavan K. Turaga, Rama 
Chellappa, Anuj Srivastava, “Blurring-invariant Riemannian 

metrics for comparing signals and images”. ICCV 2011: 1770-1775



Mis-alignment invariance
● New solutions incl. Spatial 

Transformer Networks

● 2D geometric 
normalization is learned 
end-to-end with no 
augmentation, no template.

● Converges to whatever 
alignment results in 
increased recognition 
accuracy. 

Max Jaderberg, Karen Simonyan, Andrew 
Zisserman, Koray Kavukcuoglu:Spatial 

Transformer Networks. NIPS 2015: 2017-2025



Video-related examples
● Shift/initial condition invariance in linear dynamical modeling

● Topological-invariance  in non-linear dynamical modeling

● More on these in my next talk



How to train deep neural 
networks that respect 
Riemannian constraints?



Related Work
●Deep learning for non-Euclidean constraints is gaining interest, mainly 

enforcing geometry at the input:

○ Graphs (e.g. Bruna et al. 2014)

○ 3D shapes as Riemannian manifolds (Masci et al. 2015)

○ Points on Grassmann manifold (Huang et al. 2016a), Lie groups (Huang et al. 2016b) and 
SPD matrices (Huang et al. 2017) 

●Some recent work on predicting SE(3) elements which form a Lie group by 
mapping to the Lie algebra in order to satisfy constraints (Byravan and 
Fox 2016, Clark et al. 2017)



Two examples we consider
● Face to illumination subspace 

○ Estimate illumination—invariant representation from a single face image, while explicitly 
enforcing Grassmannian geometry of space of subspaces.

● Activations to probability-density functions 

○ How to use geometry of density functions, while mapping activation layer to pdfs, and 
while training the deep net. We use square-root representation of pdfs, thereby pdf space 
becomes a sphere.



 Differences from conventional framework
1. The loss function

●Since we regress to manifold-valued data, the loss function which is 
usually a simple L-2 function, should use the geometry of the output 
space. In other words, loss should be based on the geodesic distance.

●However, it may always not be possible to derive the geodesic 
distance function in closed form or it may not be able to implement it 
easily as a differentiable layer in a neural network to put it in the 
framework of standard backpropagation.



 Differences from conventional framework
2. Satisfying manifold constraints exactly

Unless constraint satisfaction can be implemented as a differentiable 
layer it is not immediately clear how to satisfy the constraints exactly so 
that the outputs of the network will lie on the manifold.



Our solutions
1. Map to manifold directly

For “simple” manifolds, we propose directly 
mapping to the manifold. By “simple”, we mean a 
manifold where constraints can be satisfied with 
differentiable layers and have a closed form 
geodesic distance function that is differentiable. 
E.g. n-1 sphere 

Method 1: 
Map to manifold 

directly

Method 2: 
Map via the 

tangent space
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Our solutions
2. Map via tangent space

For other manifolds, we propose first learning to 
map to a tangent space. For manifolds like Stiefel 
and Grassmann, it is easier to map to the tangent 
space while satisfying constraints exactly. The 
Euclidean loss function is more meaningful here. 
We assume that all data points are close to pole of 
the tangent space.

At test time, we first map to the tangent space 
using the network and then employ the exponential 
map

Method 1: 
Map to manifold 

directly

Method 2: 
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1.Subspace Prediction
Regression on the Grassmann 

manifold



Illumination Subspace Prediction
● Illumination subspaces for faces: For a given human face, the set of 

images obtained by varying the illumination directions, lies close to a low-
dimensional subspace. And the eigenfaces follow specific patterns 
(Hallinan 1994)

●Top eigenfaces, obtained using the PCA of the image set, serve as a basis 
for the illumination subspace

●Subspaces are points on the Grassmann manifold

●We design an ill-posed inverse problem for illustration of regression on the 
Grassmannian: Given a face image of an unseen subject under unknown 
illumination, predict the illumination subspace.



Dataset for Face→Illumination Subspace
●Synthetic dataset using 3D face models (Paysan et al.) of 250 subjects under 

64 illumination conditions. Illumination subspace is calculated using PCA



Dataset for Face→Illumination Subspace
●Synthetic dataset using 3D face models (Paysan et al.) of 250 subjects under 

64 illumination conditions. Illumination subspace is calculated using PCA

19

PCA

PCA



Illumination Subspace Prediction - 
Mapping to the Grassmann Manifold?

● If we regress to eigenvectors U, it is a mapping to the Stiefel manifold

●We argue that the better representation is Grassmann because it is 
invariant to the sign flips of the eigenfaces and their permutations

●Baseline: Directly regress the eigenfaces U with Euclidean distance as 
the loss function; fails because of conflicting information in the 
groundtruth data in the training set (sign flips and permutations)

●Ou preferred representation for regression is UUT which has size n2



Illumination Subspace Prediction - 
Mapping to the Grassmann Tangent Space

●We choose a pole based on the training set (e.g. Frechet mean)

●Calculate the tangent vectors corresponding to groundtruth outputs using 
the logarithm map of the Grassmann manifold (Srivastava et al. 2004)

●This is invariant to sign flips and permutations by design

●The tangent vectors at the identity matrix have nice structure:

●Completely determined by the A matrix. Therefore we learn a mapping 
using a neural network to regress to the A matrix given a face image



Illumination Subspace Prediction - 
Mapping to the Grassmann Tangent Space

●Loss function is the Euclidean distance on the tangent space

●At test time, we initially get the Â, hence the tangent vector. We 
can compute the desired point on Grassmann manifold using the 
Exponential map (Srivastava et al. 2004)

● In both cases, the neural network has nearly the same 
architecture (3 conv -> 2 fc layers)



Results
Performance metric: Mean geodesic distance (DG) between the predicted 
subspace and the groundtruth subspace over the test set (lower is better)

P1: Subspace of the entire training set                                                                                                       
 P2: Frechet mean of the subspaces of the training subjects

Subspace Dim
(d)

Baseline

GrassmannNet-TS

Pole = P1 Pole = P2

3 0.6613 0.3991 0.3953

4 1.0997 0.5489 0.5913

5 1.4558 0.8694 0.6174



Results



2. Image Classification
Regression on the unit hypersphere



Image Classification - Mapping to the 
Hypersphere

●Many-to-one equivalence relation between final activation values and 
underlying pdf. Usually, projection implemented by soft-max.

●We can map probability mass functions to the positive orthant of the 
unit hypersphere using the square-root parametrization, which has 
advantages (Srivastava et al. 2007)

●Classification   Map to points on the (C-1)-sphere (C is number of ⇔
classes)



Image Classification - Mapping to the 
Hypersphere

●Unit norm constraint is easily satisfied with a differentiable normalization 
layer

●Loss function is based on the geodesic distance, which is available in 
closed-form and differentiable



Image Classification - Mapping to the Tangent 
Space of Hypersphere

●Pole of tangent space is chosen as the point on sphere, uS, corresponding 
to the uniform probability distribution

●Tangent vectors have constraints which can be satisfied using a projection 
layer onto the tangent space

● In the case of hypersphere, projection onto tangent space is closed form 
and differentiable and is implemented as a layer in the network



Image Classification - Mapping to the Tangent 
Space of Hypersphere

●Euclidean distance on the tangent space is used as the loss function

●At test time, after the feedforward pass through the network, exponential 
map is used to determine the point on the hypersphere and hence the pdf 
(Srivastava et al. 2007, Boumal et al. 2014)



Datasets
MNIST handwritten digit recognition

●10 classes (0-9)
●50000 train + 10000 test
●28 x 28 Grayscale Images
●LeNet-5 Architecture 

○ (2 conv → 2 fc → constraint satisfaction layer)

Constraint satisfaction layer depends on method:

●PDF: softmax  
●Hypersphere: unit normalization 
●Tangent space of hypersphere: projection layer



Datasets
CIFAR-10 object recognition

●10 classes
●50000 train + 10000 test
●32 x 32 RGB Images
●CNN architecture: 

○ 2 conv → 2 fc → constraint satisfaction layer

Constraint satisfaction layer depends on method:

●PDF: softmax
●Hypersphere: unit normalization
●Tangent space of hypersphere: projection layer



Results on MNIST and CIFAR-10
Mean accuracy (%), standard deviation (%), p-value (α = 0.05) compared to 
baseline (softmax, cross entropy) on test set, averaged over 10 runs

Output & Loss function MNIST CIFAR-10

Probability Mass Function & Cross entropy 99.224 ± 0.0306 78.685 ± 0.3493

Hypersphere & Euclidean 99.263 ± 0.0479 
(p=0.0437)

79.738 ± 0.4009, 
(p<0.0001)

Hypersphere & Geodesic 99.293 ± 0.0343 
(p=0.0002)

80.024 ± 0.5131, 
(p<0.0001)

Tangent space of hypersphere & Euclidean 99.332 ± 0.0600 
(p<0.0001)

76.047 ± 1.6225, 
(p<0.0001)



Conclusion and Future Work
●We have showed that deep learning architectures can be extended to 

nonlinear target domains, exploiting the knowledge of data geometry

●Through applications on the Grassmannian and the hypersphere, we have 
demonstrated that understanding geometric properties can lead to 
making informed choices about the loss function and exactly satisfying 
output constraints in a deep learning setting

●Can we extend it to problem domains where the data are spread wider 
from the centroid? And non-differentiable manifolds? 

●Big ticket item for geometry community: provide guaranteed invariance.
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