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ABSTRACT

As a promising solution to the problem of acquiring and storing large amounts of im-

age and video data, spatial-multiplexing camera architectures have received lot of attention

in the recent past. Such architectures have the attractive feature of combining a two-step

process of acquisition and compression of pixel measurements in a conventional camera,

into a single step. A popular variant is the single-pixel camera that obtains measurements

of the scene using a pseudo-random measurement matrix. Advances in compressive sens-

ing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect

reconstruction of an image from these measurements even for sub-Nyquist sampling rates.

However, current state-of-the-art reconstruction algorithms suffer from two drawbacks –

They are (1) computationally very expensive and (2) incapable of yielding high fidelity

reconstructions for high compression ratios. In computer vision, the final goal is usually

to perform an inference task using the images acquired and not signal recovery. With

this motivation, this thesis considers the possibility of inference directly from compressed

measurements, thereby obviating the need to use expensive reconstruction algorithms. It

is often the case that non-linear features are used for inference tasks in computer vision.

However, currently, it is unclear how to extract such features from compressed measure-

ments. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma,

discriminative features using smashed correlation filters are derived and it is shown that it

is indeed possible to perform reconstruction-free inference at high compression ratios with

only a marginal loss in accuracy. As a specific inference problem in computer vision, face

recognition is considered, mainly beyond the visible spectrum such as in the short wave

infra-red region (SWIR), where sensors are expensive.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background

“Measure what can be measured” is a quote attributed to Galileo Galilei and has been

an important principle for scientific discovery for a long time. However, the world has

witnessed an explosion in terms of amount of data generated, stored and analyzed over the

last decade which are likely to increase at even faster rates. In this scenario, it is more

apt to, as Thomas Strohmer [43] put it, ”measure what should be measured”. This is a

principle espoused by the theory of compressive sensing (CS).

The past decade has witnessed advances in theory and algorithms in the field of CS as

well as developments in camera architecture – e.g. single pixel camera (SPC) that allow

leveraging the tools supplied by CS theory. The most important aspect of compressive

sensing is that it allows near-perfect reconstruction even when a signal is sampled at a

rate much lower than the Nyquist rate, provided that the signal to be sampled is sparse in

some known basis and the sampling mechanism satisfies certain conditions (explained in

Chapter 2). This means that it is possible to sense signals directly in a compressed form,

that can be perfectly reconstructed instead of the traditional two-step process of sensing all

the measurements followed by compression. This feature of compressive sensing can be

exploited in resource-constrained settings as well as in applications where sensing hardware

would be otherwise expensive using conventional sensing technologies. Infrared imaging

is the perfect example for the latter scenario and is the focus of this thesis. The sensors

employed for imaging in the short wave IR region are very expensive. Thus, instead of

using a large number of costly sensors, it is more sensible to use an SPC as described later.
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However, there are some drawbacks with respect to the recovery of these compressed

signals:

• Current state-of-the-art reconstruction algorithms are prohibitively expensive in terms

of computation time.

• Near-perfect reconstruction is possible only when the number of measurements is

higher than a certain threshold (explained in Chapter 2). Good quality reconstruction

results are not possible at high compression ratios.

• Various parameters such as sparsity level of the signal and sparsifying basis need to

be input to the algorithm and this is often done in a rather ad-hoc manner.

Consider the case when the images sensed through compressive sampling are used in

an inference task such as face recognition. It is reasonable to assume that the recognition

needs to be fast. Hence, the focus of research for the past few years has been to design

better reconstruction algorithms (overcoming the issues listed above).

Instead of following this line of development, in this thesis, we propose a method to

bypass reconstruction entirely and perform inference directly in the compressed domain.

That is, we aim to extract features from the compressed measurements that can provide

robust high-level inference capabilities. We develop a framework to extract discriminative

correlational features from the compressed measurements. Correlational features have been

used widely in computer vision for various applications [22] to devise inference algorithms

such as face recognition.

1.2 Face Recognition

Recognizing faces - both identification and verification - has gained huge importance

over the years, particularly in the area of security and law enforcement. As a specific exam-

ple, we focus on the problem of face recognition in the NIR spectrum from compressively

2



sensed measurements of the face. Infrared imaging has become attractive sensing modality

for face recognition. The reason for this is visible imaging relies on reflected light off the

skin which is a function of the illumination and hence, the accuracy of the system may

decrease even with small changes in lighting conditions. By using infrared imaging, the

problem of illumination variation can be minimized [28]. However, infrared cameras are

very expensive, and this has prevented them from them being employed widely for tasks

like face recognition. The single-pixel camera (SPC) architecture [46] provides a cost-

effective solution for the acquisition problem. The SPC employs a single photodiode and

a micro-mirror array to acquire images. This greatly reduces the cost of the camera as a

single photodetector, sensitive to wavelengths of interest, is used for data acquisition.

An established method of performing face recognition is by first extracting features

from face images and then using pattern recognition techniques for recognition. These

features include linear features such as Gabor features [29], PCA [42], LDA [16] etc. and

non-linear features such as HOG [12] and LBP [1] and combinations of these features with

machine learning algorithms. Recently, deep learning and convolutional neural networks

have been employed [44] on very large datasets to achieve very good recognition rates. At

present, it is unclear how to derive non-linear features from compressed measurements.

1.3 Related Work in Compressed Inference

Calderbank et al. [7] showed theoretically that classifiers can be designed directly in

the compressed domain. However, the classifiers are learnt from the compressed data,

and do not consider the role of feature-extraction. Extracting features from compressed

measurements is the central idea of this thesis. In [19], Haupt et al. investigate the use

of CS measurements for signal classification rather than reconstruction i.e., using CS the-

ory as a means of universally applicable non-adaptive dimensionality reduction technique.

They derive theoretical results and error bounds that show that it is indeed possible to do
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so. The misclassification probability is shown to decrease exponentially with the num-

ber of measurements. Davenport et al. [10] propose the idea of the smashed filter to

perform classification directly on the compressed measurements. A smashed filter is a

dimensionality-reduced matched filter. They show how the general maximum likelihood

classifier can deal with transformations such as translations and rotations. In this thesis,

we design a correlation filter per class that can model many variations in each class and at

the same time, maximize inter-class variations. In [39], Sankaranarayanan et al. develop

a framework for acquiring CS videos and their reconstruction. This framework is limited

to videos that can be modeled as linear dynamical systems such as dynamic textures and

human activities. Neifeld and Premachandra [35] propose ‘feature-specific imaging’ where

images are directly measured in the required task-specific basis such as Karhunen-Loeve

or wavelet basis. In [31], a compressed sensing architecture is developed where, instead

of perfect reconstruction of the CS images, only relevant parts of the scene i.e., the objects

are reconstructed efficiently. This is halfway between doing reconstruction and bypassing

reconstruction altogether. In [47] and [33], ideas from compressive sensing are used in face

recognition with very good results. They rely on finding a sparse code for the test image

in terms of the training set vectors which is analogous to reconstruction in compressed

sensing.

1.4 Contributions

Following are the main contributions of this thesis:

1. A framework is proposed to extract linear features directly from compressive mea-

surements without recovery using smashed correlation filters.

2. It is shown through extensive experiments that inference is indeed possible using

these features with only a marginal loss in accuracy, compared to oracle sensing.
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3. It is also demonstrated that the performance of this system is barely affected even at

high compression ratios, where reconstruction would otherwise fail.

4. A framework, using a convolutional neural network, is proposed as a possible so-

lution to the problem of extracting non-linear features directly from compressive

measurements.

1.5 Organization

Chapter 2 describes the basic framework of compressive sensing. Chapter 3 presents

details of correlation filters and their applications in pattern recognition. Construction of

smashed correlation filters and using them to extract features for reconstruction-free infer-

ence are described in Chapter 4. For the specific problem of face recognition, Chapter 5

discusses the experiments performed and the results obtained on various databases. Chapter

6 discusses a possible solution for extracting non-linear features directly from compressive

measurements using a convolutional neural network. The last chapter presents conclusions

and scope for future research.
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Chapter 2

COMPRESSIVE SENSING

The invention and wide-scale deployment of the digital computer has caused a revolution

in every aspect of our lives. It has become possible to manufacture more robust and cheaper

devices as a consequence of digitization. An important first step that allows moving from

the analog to the digital domain is the Nyquist-Shannon sampling theorem. It states that,

for band-limited signals, a sampling rate at least twice the maximum frequency component

in the input signal, called the Nyquist rate, is sufficient for perfect reconstruction of the

signal of interest. That is, the theorem provides a minimum sampling rate that ensures no

information is lost during the sampling process.

The result of digital systems being employed everywhere is a huge amount of informa-

tion being generated. For example, even storing a single image of size 2 million pixels with

8 bits per pixel would require about 4 MB of storage space. Storing and communicating

such large signals, usually arising in applications such as imaging and video acquisition

for remote surveillance, MRI etc. poses a difficult challenge. It may also be the case that

traditional sensing methods are very expensive for emerging sensing modalities such as

infrared imaging, which is discussed later in the chapter.

To address the demands of such high volume of data, we often rely on data compression.

A popular method of compression is using transform coding. Here, a basis is used in which

the signal of interest can be expressed very accurately with small number of coefficients.

This is called a sparse or compressible representation since the original signal of dimension

n can be represented to a high degree of accuracy with only k non-zero coefficients, with

k << n. An example is the JPEG2000 compression standard for images that relies on the

fact that a typical image has a compressible representations in wavelet basis. An image

6



Figure 2.1: Left – Sample image of size 256× 256. Right – Wavelet decomposition of the
sample image containing lot of dark areas which shows that the image is compressible in
wavelet domain.

and its wavelet decomposition (2.1) are shown to illustrate this fact. Clearly the wavelet

decomposition has a lot of dark areas showing that the image is indeed compressible in the

wavelet basis. For our example of a 2 megapixel image, only about 100,000 wavelet coef-

ficients may be useful. However, the camera has to sense all the 2 million measurements

since the knowledge of which coefficients matter is not known a priori.

In the traditional sensing paradigm, there is no way around this problem. However,

compressive sensing (CS) provides a way to integrate sampling and compression into a

single step. CS is different from classical sampling as follows: (1) Instead of sampling

at different points in time or space, CS systems sample by obtaining inner products of the

entire signal with pseudo-random basis functions. (2) In the case of classical sampling, sig-

nal recovery is achieved through interpolation using sinc functions which is a very simple

linear process. In the CS framework, computationally expensive non-linear reconstruction

algorithms such as matching pursuit and basis pursuit need to be used.

7



2.1 Compressive Sampling Mechanism

Exploiting the sparsity of the signal and incoherent sampling, CS theory allows perfect

reconstruction of signals sampled at sub-Nyquist rates. Let x, of dimension N and k non-

zero values (k << n), be the signal to be sampled. Measurements are projections of the

signal onto basis functions as shown below:

yk = 〈x, φk〉 k = 1, 2, . . . ,M, (2.1)

In the case of an image, if the basis functions are Dirac delta functions in space, each spike

corresponding to a pixel location, then the measurements would be the measurements ob-

tained by a conventional camera. In the case of an arbitrary basis function, the measurement

would be a linear combination of the pixel values. In CS framework, we restrict the number

of measurements M such that M << N . This is shown in Figure 2.2.

Figure 2.2: Compressive sampling. Each row of Φ is a basis vector. x is the input signal
of dimension N and sparsity level k. y is the measured vector of dimension M . Note that
k < M << N .

Representing the sensing matrix as Φ, where the size of Φ isM×N and each of its rows

is a basis vector, we have y = Φx. Clearly, since M < N this forms an underdetermined
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linear system and in general, computing x from y is ill-posed. This is because there are

infinite possible solutions x̃ such that y = Φx̃. But, as we shall see, with the sparsity prior

imposed on x, it becomes possible to recover x almost perfectly.

2.2 Requirements for Perfect Reconstruction of Compressive Measurements

In order to be able to recover the original signal at a sub-Nyquist rate, two conditions

need to be met – (1) the signal needs to be sparse and (2) the sampling must be incoherent

with the sparsifying basis. These are explained in more detail below:

2.2.1 Signal Sparsity

A signal is usually modeled as a vector living in a particular vector space or subspace.

It is assumed that all vectors in this space are valid signals. However, this does not capture

the structure of the signal space. Although the ambient dimensionality of the signal may

be high, the number of degrees of freedom may be much lower and the signal can be

represented in a lower dimensional model.

For example, natural images can be expressed to a high degree of accuracy with very

few coefficients when transformed from the spatial domain to the wavelet domain as shown

in Figure 2.2. Mathematically, a vector v ∈ RN can be expressed in an orthonormal basis

Ψ of dimension N as

v =
N∑
i=1

xiψi, (2.2)

where xi = 〈v, ψi〉. In the case of images, when Ψ is the wavelet basis, it is often the

case that many xi’s are zero or close to zero. If the signal can be exactly represented with

the few non-zero coefficients, it is called a sparse signal. If it can be approximated well

by throwing away a large number of coefficients close to zero, it is called a compressible

signal. The sparsity level of the signal is defined as the number of non-zero coefficients
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in its representation. It is denoted as the `0- quasinorm or ‖x‖0. A signal with k non-zero

entries is called a k-sparse signal.

2.2.2 Incoherent Sampling

The intuition for this can be derived by considering the discrete uncertainty princi-

ple [15] which says that a non-zero signal with a sparse representation in the time domain

has a non-sparse representation in the frequency domain. For a given signal in time domain,

with knowledge of only its sparsity level but not the location of the non-zero samples, it

should be sampled in the Fourier basis as a small number of measurements is sufficient to

reconstruct the original signal.

More formally, let f ∈ CN be a discrete non-zero signal and let f̂ ∈ CN be its discrete

Fourier transform (f̂ = Ff ). Let T and Ω be the support of f and f̂ respectively. Then the

following relationships hold:

|T |.|Ω| ≥ N (2.3)

Since the geometric mean is dominated by the arithmetic mean, we have

|T |+ |Ω| ≥ 2
√
N (2.4)

Generally, for any pair of orthobases, their relationship, analogous to the above, is captured

using the notion of mutual coherence. In the case of CS theory, if Ψ and Φ are the or-

thobases in which the signal x, of dimension N , is represented and measured respectively,

then the coherence [8], µ(Ψ,Φ) between Ψ and Φ is given by

µ(Ψ,Φ) =
√
N. max

1≤k,j≤N
|〈ψk, φj〉|. (2.5)

It is to be noted that µ(Ψ,Φ) ∈ [1,
√
N ] [14]. For example, with the standard or canonical

basis as Φ and the Fourier basis as Ψ, we can achieve maximal incoherence since µ(Ψ,Φ) =

1. A more important example is that of random matrices, as they are highly incoherent with
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any fixed basis Ψ. Thus a Gaussian matrix, with i.i.d entries or a Bernoulli matrix with ±1

entries can be safely used as a sensing matrix without the knowledge of the sparsifying

basis. In this sense, these sensing matrices are universal which is one of the many attractive

properties of CS theory. With these matrices, the number of CS measurements required for

perfect reconstruction with high probability is O(k log(N
k

)).

2.3 Restricted Isometry Property (RIP)

This is an important notion that tries to quantify robustness of measurement matrices

used in compressive sensing. For each integer k = 1, 2, . . ., the isometry constant δk of a

matrix A is defined as the smallest number such that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1− δk)‖x‖2
2 (2.6)

is true for all k-sparse vectors x. When δk is not too close to 1, A is said to obey RIP

of order k which means that, A approximately preserves the Euclidean length of k-sparse

signals. Equivalently, all subsets of S columns from A need to be nearly orthogonal. This

also implies that pairwise Euclidean distances of vectors are preserved in the measurement

domain. This guarantees the existence of algorithms for discriminating these sparse vectors

in the compressed domain.

We can construct A by sampling N column vectors uniformly at random on a unit

sphere in RM or by sampling i.i.d entries from a normal distribution with mean 0 and

variance 1/M or by sampling i.i.d entries from a Bernoulli distribution with equiprobable

symbols. It can be shown that, with overwhelming probability, these matrices obey the RIP

if the number of rows M ≥ C.k log(N
k

).
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2.4 Signal Recovery

Given CS measurements y, the goal is to find the original x by finding the sparsest

solution that satisfies y = Φs, where s = Ψx. But, this amounts to minimizing the `0-

norm which is NP hard. In [13], it has been shown that for most large underdetermined

linear systems, `1-norm is equivalent to the `0-norm. Using the `1-norm makes the problem

convex and still yields the required sparse solution. Thus, the reconstuction problem is

posed as an optimization problem as follows:

x∗ = min
x̃∈RN

‖x̃‖1 s.t. y = Φs k = 1, 2, . . . ,M. (2.7)

2.5 Reconstruction Algorithms

One of the main areas of CS research has been to devise faster and more accurate

algorithms to reconstruct the sparse signal from the CS measurements. We briefly review

two fundamental algorithms:

• Basis pursuit denoising (BPDN): Here [9], we solve a quadratic convex optimization

problem of the form:

min
x

1

2
‖y − Ax‖+ λ‖x‖1, (2.8)

where λ is the parameter that performs the trade-off between sparsity and quality of

reconstruction.

• Matching pursuit: This is a greedy algorithm that finds the best projections of the

given vector onto an over-complete dictionary D. Given D, the algorithm finds the

atom in D that has the highest inner product with the vector, subtracts it from the

vector, finds the next best atom and so on. Thus, at each step, it iteratively refines the

representation. Due to the fact that D is over-complete, the output is a sparse vector.

Extensions of this algorithm exist, such as Orthogonal Matching Pursuit [36, 45] and

Compressive Sampling Matching Pursuit (CoSaMP) [34].
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Basis pursuit is more robust to noise, but matching pursuit tends to be faster. However, all

these algorithms are still very expensive in terms of time complexity.

2.6 Single Pixel Camera

The single pixel camera (SPC) was developed at Rice University [46] as a proof of

concept of compressive acquisition of images. The SPC framework is shown in Figure 2.3.

The illumination from the scene is projected onto the digital micromirror device (DMD).

A DMD consists of millions of micromirrors each representing one of its pixels. Each

micromirror can be in one of two states depending on its rotation - on or off. The config-

uration of the mirrors is encoded as a pseudorandom binary pattern and stored in memory.

The light reflected off the DMD is focused onto a single sensor - a photodiode that is

sensitive to the required wavelengths. This process optically computes the inner product

between the image and the pseudorandom pattern and forms one CS measurement. Differ-

ent CS measurements are obtained by changing the mirror configuration as many number

of times.

Figure 2.3: Single pixel camera architecture and image acquisition mechanism from [46].

In addition to reducing the dimensionality, there is another advantage to using SPCs.

In infrared imaging – e.g. in the short wave infrared (SWIR) range, the pixels are very
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expensive. The SPC, on the other hand, requires just one photodiode that can sense the

appropriate wavelengths. This feature of the SPC, combined with CS theory, is exploited

in this thesis to perform infrared face recognition, as explaining in the following chapters.
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Chapter 3

CORRELATION FILTERS FOR VISUAL RECOGNITION

By visual recognition, we mean the task of assigning an input image to one of the many

predefined classes accurately. An example of this task is face recognition which is the

automatic identification or verification of a person from their facial image.

The standard method for visual recognition using labeled data is a three-step process

illustrated in Figure 3.1. This procedure is also referred to as supervised learning in the

parlance of machine learning. Pre-processing an image may include contrast enhancement,

image registration, noise reduction etc. Feature extraction in a method of reducing the

amount of data by extracting only the relevant information that might aid in classification.

The final step in the pipeline is classification of the features extracted with the help of

a classification algorithm – called the classifier – that has been trained using the labeled

database.

Figure 3.1: Main steps in visual recognition.

Instead of using hand-crafted, application-specific features, the training dataset can

itself be used for extracting discriminative features for classification. Correlation filters

(CFs) are filters that are generated directly from the training images. One CF is computed
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per class in the case of a multi-class classification problem. For each class, the CF is de-

signed so as to be able to give a high correlation output only when a test image belonging

to that particular class is presented to it. Thus, using the correlation outputs from all the

filters for each of the classes, it becomes possible to classify the input image. However,

before designing CF, it is necessary to understand the concept of matched filters, which is

presented next.

3.1 Matched Filters

Historically, the matched filter (MF) was developed for target detection in the received

signal of a radar system using cross correlation. Cross-correlation is a particularly attractive

method for pattern recognition since it implicitly provides shift invariance. That is, if the

target shifts, so does its correlation, by the same amount. But, the magnitude of correlation

at the target location is preserved.

Consider a binary detection problem which requires classifying a received signal r(t)

that is a corrupted version of the signal s(t) corrupted by additive white noise n(t). Under

these conditions, matched filter is the linear filter H(f) that provides optimal performance

by maximizing the output SNR. The impulse response of the matched filter h(t) is pro-

portional to the time reversed version of the transmitted signal i.e., s(−t) [25]. From an

optimization point of view, for a signal x and desired output g, the MF h is obtained by

minimizing

r(x, f ,g) = ‖h⊗ x− g‖, (3.1)

where⊗ is the cross-correlation operation. Unfortunately, MFs are not applicable to practi-

cal pattern recognition problems. This is because their performance degrades significantly

when the test patterns deviate from the template. This motivates the need of more advanced

correlation filters (CFs) whose output is more stable when presented with variability at the

input for a particular class.
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3.2 Correlation Filters

CFs have found various applications such as target recognition [41], object detec-

tion [37], face detection [6], face recognition [40] etc. The block diagram of a correlation

filter in shown in Figure 3.2. The correlation output usually has a characteristic peak if

the input image is a match i.e., it belongs to the same class as that of the correlation filter.

Otherwise, no peak is observed.

Figure 3.2: Block diagram of correlation based pattern recognition.

Using the correlation outputs called “correlation planes”, a performance measure called

the Peak-to-sidelobe ratio (PSR) is defined, that characterizes the sharpness of the peak.

PSR is calculated using the formula PSR = peak−µ
σ

, where µ is the mean and σ is the

standard deviation of the correlation values in a bigger region around a mask centered at

the peak as explained in [40].

These advanced CFs are designed by using multiple training images per class as well as

incorporating regularization in order and improve noise tolerance and generalization. We

have two kinds of correlation filters:
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3.2.1 Unconstrained Correlation Filters

Here, the correlation filter is derived to be the solution of an optimization problem

over the entire training set with n images xi, i = 1, 2, . . . , n, taking into account both the

localization loss as well as regularization:

h∗ = arg min
h

1

n

n∑
i=1

‖h⊗ xi − gi‖2
2 + λ‖h‖2

2, (3.2)

where λ is the parameter used to control the trade-off between localization and regular-

ization and gi is the ideal correlation plane for the ith image. As explained in [5], the

optimization problem in 3.2 can be solved efficiently by expressing it in the frequency

domain:

ĥ∗ = arg min
ĥ

1

n

n∑
i=1

ĥ†X̂iX̂
†
i ĥ−

2

n

n∑
i=1

ĝ†i X̂iĥ + λĥ†ĥ, (3.3)

where x̂ is the DFT of x and X̂ is a diagonal matrix with the elements of x̂ on its diagonal.

By solving this optimization problem, we get a closed form expression for the optimal CF:

ĥ∗ =

[
λI +

1

n

n∑
i=1

X̂iX̂
†
i

]−1[
1

n

n∑
i=1

X̂iĝi

]
. (3.4)

Depending on the value of g, the CF obtained from 3.4 can be an Unconstrained Min-

imum Average Correlation Energy (UMACE) filter [30], Maximum Average Correlation

Height (MACH) filter [32] etc.

3.2.2 Constrained Correlation Filters

In equality constrained correlation filters, in addition to the minimizing the objective in

(3.2), we also constrain the correlation value obtained at the target location for each training

image to a particular value ci. This results in the modified optimization problem:
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h∗ = arg min
h

1

n

n∑
i=1

‖h⊗ xi − gi‖2
2 + λ‖h‖2

2 (3.5)

s.t. hTxi = ci, i = 1, 2, . . . , n.

As before, by transforming this to the frequency domain, we get

ĥ∗ = arg min
ĥ

1

n

n∑
i=1

ĥ†X̂iX̂
†
i ĥ−

2

n

n∑
i=1

ĝ†i X̂iĥ + λĥ†ĥ (3.6)

s.t. ĥT x̂i = ci, i = 1, 2, . . . , n.

By choosing appropriate values for g and λ, we can derive the Minimum Average Corre-

lation Energy (MACE) filter [30] and Optimal Trade-off Synthetic Discriminant Function

(OTSDF) filter [24]. The general solution to the above has a closed form expression given

by

ĥ∗ = Ŝ−1X̂(X̂†Ŝ−1X̂)−1c, (3.7)

where X̂ is the data matrix with each column corresponding to the vectorized version of

DFT of the training images. S = γI+ 1
n

∑n
i=1 X̂

†
iX̂i. With γ = 0, we get the MACE filter.

3.3 Maximum Margin Correlation Filters

Maximum margin correlation filters (MMCFs), used later in this thesis, are a kind of

constrained correlation filters with non-equality constraints. Traditional CFs, although they

provide very good localization, do not perform as well as SVMs in terms of generalization.

MMCFs combine the strengths of traditional CFs and the SVM. Specifically, they are de-

signed to provide:

(i) High PSR: The correlation output is high only at the target location; it is much lower

at all other locations. This criterion comes from the earlier work in MACE filters.
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(ii) Max-margin: A large margin between the positive and negative training examples is

achieved. This is the objective of the SVM and it reduces to correlations at the center

of the image being well-separated.

The above goals are achieved by solving an optimization problem of the form:

min
h,b

(‖h‖2
2 + C

N∑
i=1

ξi,

N∑
i=1

‖h⊗ xi − gi‖2
2) (3.8)

s.t. ti(h
Txi + b) ≥ ci − ξi, i = 1, 2, . . . , N,

where the minimizer h∗ is the required MMCF, gi is the desired value of the correlation

output, ci = 1 for images in the true class and ci = 0 for those in the false class. ξi are the

positive slack variables that take care of outliers and ti ∈ {−1, 1} are the labels. As shown

in [37], with appropriate transformations, (3.8) can be reduced to a single optimization

problem that can be solved on any standard SVM solver.

In this thesis, we employ MMCFs in our compressive framework in order to perform

face recognition. This is explained in detail in the next chapter.
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Chapter 4

FACE RECOGNITION USING SMASHED CORRELATION FILTERS

In this chapter we describe a method to perform face recognition using measurements ob-

tained from a single pixel camera (SPC), without reconstruction. We employ MMCFs

(described in section 3.3) trained on the full-blown face images and use them to construct

smashed filters [10] as described later in this chapter. The theoretical basis for compressed

inference using correlation filters is provided by the Johnson-Lindenstrauss (JL) lemma.

Consider a training set of P non-compressed face images belonging to Q classes. Let

each such image be denoted by Xp, p = 1, 2, . . . , P . Q MMCFs, one for each of the Q

classes, are trained by solving an optimization of the form shown in Equation 3.8. Let

us denote each MMCF thus obtained by Hq, q = 1, 2, . . . ,M . Let each image be of size

N = N1 ×N2 pixels. Each Hq is also of the same size. Face recognition in the traditional

framework is done using full-blown images as shown in Figure 4.1. We will call this the

oracle method and use this to compare the accuracy of face recognition with compressed

measurements.

Each test image is correlated with each Hq in order to obtain Q correlation planes,

cq, q = 1, 2, . . . , Q. The size of cq is (2N1− 1)× (2N2− 1). The correlation plane is given

by the equation:

cq(i, j) =

N1−1∑
k=0

N2−1∑
l=0

X(k, l)Hq(k − i, l − j). (4.1)

This can be written in the form of an inner product as

cq(i, j) = 〈X,H i,j
q 〉, (4.2)

whereH i,j
q is the shifted version ofHq by i and j units in the x and y directions respectively.

In the case of compressed measurements obtained from the SPC, the high-dimensional
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Figure 4.1: Face recognition in a traditional correlation pattern recognition framework -
oracle

image space, say RN is mapped to a lower dimensional RM . We have access only to the

compressed measurements ΦX . Since our aim is to bypass reconstruction, we need to be

able to use the same correlational framework for the compressed sensing case. This is

where we resort to the JL lemma, the details of which are explained in the next section.

4.1 JL Lemma and Correlation-preserving Maps

According to the Johnson-Lindenstrauss lemma, certain embeddings exist that preserve

the general geometric relations of a set of points in a high-dimensional space, when mapped

to a lower dimensional space. In the case of compressive sensing, the mapping is provided

by a pseudo-random sensing matrix, Φ. It is stated more formally as follows:

Given 0 < ε < 1 , a set X of P points in RN , and a number M > N0 = O( log(P )
ε2

) ,

there exists a linear map f : RN → RM such that

(1− ε)‖v − u‖2 ≤ ‖f(v)− f(u)‖2 ≤ (1 + ε)‖v − u‖2 (4.3)
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It is required that the mapping be at least Lipschitz continuous, which limits the rate at

which the function changes.

Recently, the manifold structure of random projections has been studied in detail. In [3],

using the JL lemma, it is shown that, by using random projections of data points on a

smooth manifold, all pairwise geodesic distances are preserved with high probabiity. In

[21] and [17], manifold learning algorithms are developed using random projections. This

is related to the thesis in that the distance preserving property of these random projections

is used to perform inference in the compressed domain. The JL lemma is also intimately

connected with the Restricted Isometry Property (RIP) of sensing matrices in CS theory [2].

Using the above results, as proven in [11], we get an expression for the correlation

values as

cm(i, j)− ε ≤ 〈f(X), f(H i,j
m )〉 ≤ cm(i, j) + ε. (4.4)

Even though the JL lemma does not tell us how to find f , as long as it satisfies RIP, we can

construct f as a matrix Φ of size M × N . Given that M ≥ C.k log(N
k

), Φ satisfies RIP

with overwhelming probability [8] if:

• the entries are i.i.d realizations of a standard Gaussian or

• the entries are i.i.d realizations of a Bernoulli random variable

Using one of the above matrices as the sensing matrix, we can rewrite Equation 4.4 as

cm(i, j)− ε ≤ 〈φX, φH i,j
m 〉 ≤ cm(i, j) + ε. (4.5)

Thus, correlation values are preserved in the lower dimensional mapping, to a certain de-

gree of accuracy determined by ε. This provides the theoretical foundation for compressive

classification described in the next section.
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4.2 Face Recognition with Smashed MMCFs

The H i,j
m from (4.5) is called the smashed filter [10]. By employing these filters, we can

modify the traditional method of face recognition with correlation filters shown in Figure

4.1. The block diagram for face recognition with smashed correlation filters is shown in

Figure 4.2.

Figure 4.2: Face Recognition in a compressed sensing framework with smashed MMCFs

Equation 4.5 the correlation outputs of the compressed measurements can be obtained

to a certain degree of accuracy (determined by the number of measurements) without recon-

struction. Clearly, if there are Q subjects, Q correlation filters are trained and Q correlation

planes are obtained for each test ”image”, as shown in the block diagram.

Each correlation plane is divided into non-overlapping blocks and for each block, the

peak and peak to side-lobe ratio (PSR) are determined. PSR is calculated using the formula

PSR = peak−µ
σ

, where µ is the mean and σ is the standard deviation of the correlation values

in a bigger region around a mask centered at the peak as explained in [40]. The peaks and
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PSRs of the different blocks are concatenated. Similar vectors are obtained for the each of

the Q correlation planes. All these vectors are concatenated to form a single feature vector

for the particular test image. This feature vector is input into Q linear SVMs for a one vs

all classification. It is to be noted that the SVMs are trained on feature vectors obtained in

the same fashion from the training set.
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Chapter 5

EXPERIMENTS AND RESULTS

In this chapter, we test the framework described in the previous to perform face recognition

in the compressed domain without reconstruction. We carry out two sets of experiments:

(i) Controlled experiments: Here, we use publicly available databases - NIR and

AMP and proceed to train the max–margin correlation filters. For testing, we use

the testing set of the database and simulate the process of getting the compressed

measurements in software. We carry out the face recognition experiment at different

compression ratios and different noise levels. We study the effect of using differ-

ent measurement matrices - (a) Gaussian random matrix, ΦG (b) Low rank column

permuted Hadamard matrix, ΦH and (c) Simple downsampling, ΦD.

(ii) Experiments on the single pixel camera (SPC): We perform a similar face recog-

nition experiment on actual compressed measurements of face images. The com-

pressed data were obtained through a collaboration with researchers at Carnegie Mel-

lon University, Pittsburgh, who have built an SPC.

5.1 Controlled Experiments

In this section, we use two publicly available face datasets in order to perform compres-

sive face recognition by simulating the process of compressive sensing in software. The

two datasets are described below:
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Figure 5.1: Sample images from the NIR database.

5.1.1 NIR Database

The NIR database [28] consists of near infrared images of 197 subjects with 20 images

per subject in grayscale. The images have been captured using an active NIR imaging sys-

tem that is shown to be able to produce high quality images irrespective of the surrounding

lighting conditions. Each image was resized to 256 × 256 from the original size of 640

× 480. For each subject, 10 images are used for training and the remaining 10 images are

used for testing. Sample images from the dataset are shown in Figure 5.1.

5.1.2 AMP Database

The AMP database1 is a facial expression database compiled by the Advanced Multime-

dia Processing lab at CMU. The dataset consists of 975 grayscale facial images belonging

to 13 people, each of size 64 × 64 pixels. Sample images from the database are shown in

Figure 5.2. For each subject, 25 images are used for training and the remaining 50 images

are used for testing.

1http://chenlab.ece.cornell.edu/projects/FaceAuthentication/
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Figure 5.2: Sample images from the AMP database

5.2 Training and Testing Protocol

Here, we describe the protocol used for both datasets. We describe in detail the param-

eters chosen for the NIR database only where images are of resolution 256× 256 (obtained

after rescaling). The AMP database uses corresponding scaled parameters suitable to the

image-size 64 × 64. For the NIR database, the MMCFs, one for each of the 197 classes,

are trained using the 256 × 256 images from the training set. Then, each image in the

dataset is vectorized to get a vector xi. The process of getting the measurements yi from a

single pixel camera is simulated using the equation yi = Φxi, where Φ is the measurement

matrix.

First, the measurement matrix is chosen to be a Gaussian matrix (ΦG) such that the

entries of the matrix are i.i.d. standard Gaussian. The number of rows, M of the matrix

corresponding to the number of compressed measurements is varied. Three values of M

are chosen – 65536, 625 and 121 corresponding to compression ratios CR = 1, 105, 542

respectively.

Then, according to equation 4.5, the trained correlation filters {Hi} are also compressed

to obtain the smashed filters H̃i = ΦHi. As explained in Chapter 4, each compressed image
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in the training set is correlated with all the smashed filters to obtain 197 correlation planes.

Using Equation 4.5 directly to get the correlation estimates ĉ(i, j) is not efficient since

it requires that the smashed filter be computed separately for each shift (i, j). Instead,

equivalently, we first project the compressed measurements Φx back into the pixel space

by premultiplying with ΦT . That is, we compute

ĉ(i, j) = 〈ΦTΦx, H i,j〉. (5.1)

This can be computed efficiently using the FFT. Then, each correlation plane is divided into

B = 16 square non-overlapping blocks (of size 128× 128) and the PSR and peak values of

each block is extracted. These values, in addition to the PSR and peak value for the entire

correlation plane, are concatenated to form a feature vector of size 1×6698. These features

are used to train 197 linear SVMs, one for each class. In the testing phase, feature vectors

of the compressed images are obtained in the same fashion and input to the trained SVMs

for a one vs all classification. The accuracy of the face recognition system is determined as

the ratio of number of correctly recognized faces to the total number of faces.

The above experiment is then repeated with ΦH , the matrix containing a random subset

of rows of a permuted Hadamard matrix. As before, the accuracy is determined for different

numbers of measurements, M (the number of randomly chosen rows of ΦH . Finally, the

images in the dataset are downsampled by the same factors and the same experiment is

carried out.

Next, the effect of adding noise on face recognition accuracy is considered. Each of

the above experiments is repeated after adding measurement noise – Gaussian noise – of

standard deviation σ calculated using σ = η ‖Φx‖√
M

, where η = 0, 0.1, 0.2, 0.3 is the noise

level. The recognition accuracies are determined at each noise level at each compression

factor for each of the measurement matrices. Figure 5.3 shows the variation of accuracy

with respect to noise, CR held constant.
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Figure 5.3: The figures show the variation of recognition accuracy for the NIR database
for Oracle (no compression), Gaussian measurements, low-rank permuted Hadamard mea-
surements, downsampling, for varying amounts of measurement noise. Note that results
indicate that performance is close to Oracle for low-noise levels, and Hadamard is more
stable in performance than Gaussian and downsampling operators

Similar experiments are conducted on the AMP database at two CRs of 28 and 114.

Since there are 13 subjects, 13 correlation filters are trained, each filter corresponding to

one of the subjects. Each correlation plane is divided into B = 4 blocks and features

are computed similar to above. Figure 5.4 shows the variation of accuracy with respect to

noise, CR held constant.

From the plots above, we make the following important observations:

(i) At low noise levels, reconstruction-free inference results at high compression ra-

tios are very close to the results obtained with Oracle sensing (no compression).

(ii) Hadamard measurement matrices are much more robust to noise, especially at

high compression ratios, compared to Gaussian and downsampling measurements.
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Figure 5.4: The figures show the variation of recognition accuracy for the AMP database
for Oracle (no compression), Gaussian measurements, low-rank permuted Hadamard mea-
surements, downsampling, for varying amounts of measurement noise. Note that results
indicate that performance is close to Oracle for low-noise levels, and Hadamard is more
stable in performance than Gaussian and downsampling operators

5.3 Experiments on Single Pixel Camera

The single pixel camera we used to obtain data was built by researchers at Carnegie

Mellon University. It uses a digital micro-mirror device (DMD) with a resolution of

1024× 768 and changes the micro-mirror configurations at a frame-rate of 22.7 kHz. The

measurement rate of the SPC is determined primarily by the operating speed of the DMD;

hence, we obtain 22.7k measurements per second. For example, to capture an image of

resolution 128 × 128 without CS recovery, we would need 0.72 seconds at the operating

rate of 22.7kHz. With CS, this can be reduced to as little as 0.1 seconds without significant

loss in quality.

Based on the observations from the controlled experiments reported in section 5.1 and

because it is easy to implement in hardware, we use a permuted Hadamard matrix for

sensing. More specifically, for an N × N image, we first generate a N2 × N2 column-

permuted Hadamard matrix. Each row of this matrix is shaped into an N ×N image that is
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upsampled and mapped to the 1024×768 mircomirror array. Given that the DMD can only

direct light towards or away from the photodetector, this implements a 0/1 measurement

matrix. To obtain measurements corresponding to the ±1 Hadamard matrix, we subtract

half the average light level from the observed measurements in post-processing.

The new dataset consists of 120 face images, belonging to 30 subjects with 4 images per

subject. The images are captured using the SPC at a resolution of 128 × 128. The dataset

is divided into four train-test splits. For each split, the train set consisted of three images

per subject, and the test set contained one image per subject. The recognition experiment

was conducted at various compression ratios. The results are shown in Table 5.1.

Compression ratio No. of Measurements Recognition Accuracy

1 (Oracle) 16384 60%

10 1638 62.5%

50 328 58.33%

100 164 53.33%

200 82 49.17%

Table 5.1: Face Recognition results obtained on compressed measurements from a single
pixel camera.

Reconstruction failure Here, we demonstrate that, for high compression ratios (CR),

inference is not possible even after reconstruction using state-of-the-art algorithms. From

the SPC measurements of a face image, we reconstruct a face image using the CoSaMP

algorithm [34] at compression ratios of 5, 10 and 100 as shown in Figure 5.5. Clearly,

reconstructed images at high CRs retain no valuable information that can be exploited for

inference. Hence, we need to employ a framework – such as the one described in this thesis

– for direct inference on compressed measurements.
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No compression CR = 5

CR = 10 CR = 100

Figure 5.5: The figures show the reconstruction of images of a face at different compres-
sion ratios (CR) using the CoSaMP [34] algorithm. Note how reconstruction quality de-
grades very rapidly across compression rates which makes ‘reconstruction-then-inference’
a losing proposition.

5.4 Error Analysis

In this section, we try to visualize the error in correlation estimation produced due to

random projection. As shown in Equation 4.5, this error is quantified in terms of ε, which

is the absolute difference between correlation in the original domain, c and correlation in

compressed domain, ccomp. That is, at each location (i, j), ε can be defined as

ε = |c(i, j)− ccomp(i, j)| (5.2)

= |〈H i,j, X〉 − 〈ΦH i,j,ΦX〉| (5.3)

In order to visualize this error, we considered 2 face images belonging to different
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subjects, X1 and X2 and the 2 corresponding filters H1 and H2 from the AMP dataset.

Each image is correlated with both the filters to obtain the correlation planes c11, c12 for

X1 with H1 and H2 respectively and c21, c22 for X2 with H1 and H2 respectively. The

compressed measurements of the images are computed at CR = 28 and the corresponding

correlation estimates in the compressed domain are obtained – ccomp11 , ccomp12 , ccomp21 , ccomp22 .

Using Equation 5.2, ε11, ε12, ε21 and ε22 are computed respectively. The results are shown

in Figure 5.6. Next, each ε is cross-correlated with all the other ε’s. The plots obtained from

this are shown in Figure 5.7. It can be observed that there is significant correlation between

the ε’s. This means that the error in the correlation estimates are correlated with each other

irrespective of the input image or the class that the image belongs to. Thus, in the case of

compressed measurements, even though the correlation plane itself does not seem to show

the peak that is required to classify the images, it nevertheless contains the information

required for classification. This also motivates the use of a classifier – SVM in our case –

that uses a feature extracted from these correlation planes as described in Section 5.2.
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Figure 5.6: The left column shows the correlation planes of two images X1 and X2 (oracle
sensing) belonging to different classes with corresponding filters H1 and H2. The middle
column shows the correlation plane estimates obtained with compressed measurements.
The right column shows the difference, ε, between the correlation planes for oracle sensing
and the correlation plane estimates obtained using compressed measurements.
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Figure 5.7: Each ε from Figure 5.6 is cross-correlated with the all the other ε’s. Note
the prominent peak at the center of each correlation plane. This shows that the errors in
correlation estimates obtained using compressed measurements for different images and
filters are all correlated with each other.
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Chapter 6

EXTRACTING NON-LINEAR FEATURES USING CONVOLUTIONAL NEURAL

NETWORKS

The previous chapters have shown how to extract simple linear features from compres-

sive measurements using correlation filters for visual inference. The next step would be

to design a framework capable of extracting non-linear features from these measurements.

Hand-crafted and usually task-specific non-linear features – e.g. Histograms of Oriented

Gradients (HOG) and Local Binary Patterns (LBPs) – are extracted from pixel values and

have been shown to be very useful for computer vision applications such as image recog-

nition. However, it is not straightforward as to what kind of non-linear features can be

extracted from compressive measurements that can be used reliably for high-level infer-

ence. In this chapter, we show that feature learning using a multi-layered convolutional

neural network (CNN) is a possible solution to this problem.

The CNN architecture has been shown to be very good at tasks like hand written digit

recognition [26]. More recently, using deep CNNs (with many layers), huge leaps have

been possible in a variety of computer vision tasks such as image recognition [23], ob-

ject detection [18], face recognition [44] etc. The success of such architectures has been

attributed to the network’s ability to learn an optimal set of rich, discriminative features

directly from training set rather than relying on hand-crafted features.

CNNs can be very briefly described as follows. They are multi-layered neural network

architectures [4] that contain many layers of small groups of neurons that are active to small

regions in an input image. The output from groups of neurons of one layer are combined

in the next layer and so on. This results in some amount of translational invariance in the

input. The main difference between conventional neural networks and CNNs is that the
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not all neurons in a layer are connected to every neuron from the previous layers. Thus the

weight matrix, that contains the weights between all pairs of neurons of consecutive layers,

is sparse. This results in a reduction in the number of parameters that need to be optimized

in the network and better convergence.

6.1 MNIST Database

The MNIST database1 contains hand written digits of size 28 × 28 in grayscale. The

dataset is already divided into three files - training set containing 50000 images, validation

set containing 10000 images and the testing set containing 10000 images. Each image

belongs to one of 10 classes – digits 0 through 9. MNIST was chosen since training a CNN

for this database is simple and does not need special hardware. Sample images are shown

in Figure 6.1.

Figure 6.1: Sample images from the MNIST database.

1http://yann.lecun.com/exdb/mnist/
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6.2 CNN Architecture

The architecture we use in this thesis is based on the LeNet-5 model [27] with two con-

volutional (convolution followed by tanh non-linearity) and max-pooling layers followed

by a single fully connected layer and a 10-way softmax classifier. This is shown in Figure

6.2. The input image is fed into the first convolutional layer that consists of 20 filters of size

5×5 and produces 20 feature maps of size 24×24. This is followed by a maxpooling layer

that reduces the size of feature maps to 12 × 12. The second convolutional layer contains

50 filters of size 5× 5 and produces 50 feature maps of size 8× 8, followed by maxpooling

which further reduces the size to 4×4. These feature maps are flattened into a single vector

of size 1× 800 and fed into the fully connected layer, which yields the final feature vector

of size 1× 500. This feature vector is used as input for a softmax classfier that outputs the

probabilities for each of the 10 classes. The final prediction is simply the class that has the

highest probability for the given input image.

Figure 6.2: LeNet-5 architecture2

6.3 CS-MNIST Recognition

Here, we demonstrate that CS measurements can be used directly for classification,

without reconstruction, using the CNN described above. The entire database was com-

pressed with a random Gaussian short, fat matrix, Φ. That is, for each vectorized image

x, compressed sensing was simulated using y = Φx. Each y was then projected back
2http://deeplearning.net/tutorial/lenet.html#lenet
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into the pixel space using x̂ = ΦTy. This new database was used to train the CNN using

mini-batch gradient descent. The validation set was used for early stopping [48], which is

a method used to prevent overfitting. The testing set was used to measure its performance.

The results obtained at different compression ratios (CR) are shown in Table 6.1. Figure

6.3 shows how the validation error varies as training progresses.

Compression Ratio No. of Measurements Test Error

1 (Oracle) 784 0.93%

5 156 1.86%

10 78 3.02%

20 39 6.40%

100 8 39.13%

Table 6.1: MNIST recognition results obtained on compressed measurements using LeNet-
5 CNN trained separately at each CR.

It can be seen from Table 6.1 that CNNs provide a possible way of extracting non-linear

features from compressive measurements. For example, using just 78 of the 784 measure-

ments yields an impressive test-error rate of 3.02%. From Figure 6.3, we observe that the

validation error decays quickly and approaches the final value within a small number of

epochs at all compression ratios. The results are encouraging on the MNIST database and

it remains to be seen whether similar trends will be observed for natural images.

In the experiment described above, a different CNN is trained for each compression

ratio. Next, we investigate the possibility of training a single CNN using the original images

from the MNIST database(oracle) and testing the network using compressed images at

different CRs. The results obtained are shown in Table 6.2.

Clearly, the accuracy for a particular CR in Table 6.2 is considerably lower than the

corresponding accuracy in Table 6.1. This is expected since in the first case the network
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Figure 6.3: Results from LeNet-5 CNN on CS-MNIST. The plot shows how the validation
error converges at various compression ratios (CR). Maximum number of epochs was set
to 200.

trained on the compressed measurements and thus, the weights learned are optimized for

the compressed measurements for a particular CR. In the second case, the network learned

on the original MNIST database is used for testing on compressed measurements. Clearly,

this does not perform as well as the first case since the inputs at high CRs are too different

from the full-blown images.
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Compression Ratio No. of Measurements Test Error

1 (Oracle) 784 0.92%

5 156 31.15%

10 78 65.58%

20 39 84.1%

100 8 88.65%

Table 6.2: MNIST recognition results obtained on compressed measurements using LeNet-
5 CNN trained once on original images.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

Compressive sensing is a revolutionary method in signal acquisition and processing that is

well suited for many resource constrained environments. It combines sampling and com-

pression into one step, while allowing near-perfect reconstruction at sub-Nyquist sampling

rates. However, current reconstruction algorithms are suffer from some drawbacks. In

this thesis, we have presented a framework to address the problem of high level inference

from compressive measurements without reconstruction. To this end, we have constructed

smashed correlation filters and have shown that it is indeed possible to do so. We have

demonstrated that, as a consequence of the JL lemma, correlations are preserved in the

compressed domain and the correlational features thus extracted contain discriminative in-

formation for robust classification, even at high compression ratios. As a specific example,

we have shown how this framework can be readily applied to the problem of face recog-

nition, with very good results. This is especially important in the infrared domain, where

compressive sensing architecture – e.g., the single pixel camera – provides a cost effective

solution. There is a lot of scope for future research in this emerging field of compressive

inference. Developing methods to extract non-linear features tailored for computer vision

from compressive measurements is of prime concern. We have discussed one possible way

of extracting non-linear features using convolutional neural networks. Considering the

astronomical amounts of data being generated around the world, storage and more impor-

tantly smarter processing are issues that deserve attention. Compressive sensing provides a

smart technique of sensing, storing and communicating data. Designing better algorithms

that can exploit this directly for other tasks such as inference, in a computationally efficient

fashion, is the challenge that lies ahead and this thesis is an important step in this direction.
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