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ABSTRACT

Over the last decade, deep neural networks also known as deep learning, com-

bined with large databases and specialized hardware for computation, have made

major strides in important areas such as computer vision, computational imaging

and natural language processing. However, such frameworks currently suffer from

some drawbacks. For example, it is generally not clear how the architectures are

to be designed for different applications, or how the neural networks behave under

different input perturbations and it is not easy to make the internal representations

and parameters more interpretable. In this dissertation, I propose building constraints

into feature maps, parameters and and design of algorithms involving neural networks

for applications in low-level vision problems such as compressive imaging and multi-

spectral image fusion, and high-level inference problems including activity and face

recognition. Depending on the application, such constraints can be used to design

architectures which are invariant/robust to certain nuisance factors, more efficient

and, in some cases, more interpretable. Through extensive experiments on real-world

datasets, I demonstrate these advantages of the proposed methods over conventional

frameworks.
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Chapter 1

INTRODUCTION

In this dissertation, I show that building constraints into layers, latent representa-

tions, and functions of deep neural networks for applications in computational imaging

and vision leads to different kinds of advantages and improvements over conventional

unconstrained frameworks. In the case of compressive imaging, I show how to build

practical design constraints into the neural network models designed to solve the im-

age reconstruction problem, leading to more efficient solutions. For the application

of multi-spectral image fusion, I design hybrid data-driven and model-based solu-

tions, where the neural network model is designed to perform a specific function of

the algorithm rather than a fully black-box end-to-end mapping between inputs and

desired outputs, which lends more interpretability to the algorithm. Similarly in ac-

tion recognition and other time-series classification problems, I show that by adding

special layers with constraints, we can add expressive power to deep network in an

interpretable manner that allows for learning invariant representations to execution-

rate and at the same time, also improved discriminative power. Taking the notion of

invariants further, I finally discuss how we can impose geometric constraints at the

output of neural networks leading to the general problem of non-linear regression on

Riemannian manifolds using neural networks. This leads to architectures that can

generate an illumination invariant from a single human face image which can result

in illumination-robust face recognition. I now describe three application-areas where
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I apply the above ideas. Each application will be discussed in separate chapters in

more detail.

1.1 Applications in Imaging

In computational imaging and low-level vision, several important problems are ill-

posed inverse problems. These include image denoising, super-resolution, deblurring

etc. In this dissertation, we focus on two such applications – reconstruction of com-

pressively sensed images, and fusion of multi-spectral images. Several other works

now exist describing how deep learning can be employed for various other inverse

problems. The reconstruction problem in compressive sensing can be viewed as the

most general form of linear inverse problems and subsumes other applications such as

super-resolution as special cases. First, in Chapter 2, I describe a purely data-driven

neural network called ReconNet that approximately solves this problem for natural

images and overcome several drawbacks of earlier iterative algorithms. Following the

developments of the deep learning community such as generative adversarial networks

(GANs), I propose several improvements over the base ReconNet architecture to sig-

nificantly reduce the reconstruction error. In Chapter 3, I show how to translate two

interesting practical design constraints into constraints on the measurement operators

which can jointly with ReconNet – (1) rank constraints which model the trade-off be-

tween the number of measurements to sense, and the reconstruction quality and (2)

subset-validity constraints such that subsets of the learned measurement operator are

also valid measurement operator for the same reconstruction network, which allows

for a single ReconNet to be used over a large range of measurement rates.

Since the development of purely data-driven approach for linear inverse problems,

researchers have developed algorithms that combine earlier iterative methods with

the data-driven methods with some success. This is mainly done through “unrolling”
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the iterative algorithm and each stage is made up of neural network layers that can be

trained. In Chapter 4, I show how these ideas are applicable to the problem of multi-

spectral image fusion which is a form of super-resolution with side information. As a

solution to the problem, based on earlier signal processing theory, I propose unrolled

projected gradient descent, where the neural network layers perform the function of

projection onto the manifold of high resolution multi-spectral images. Thus, we can

build hybrid model-based and data-driven models for multi-spectral image fusion.

Experimentally, we make significant gains in terms of both image fusion quality as

well as computational speed-up.

1.2 Temporal Warping for Action Recognition

In Chapter 5, I use similar ideas of hybrid model and data-driven neural networks

presented in Chapter 4, to perform end-to-end classification of time-series signals,

in particular, human action recognition using skeletal sequences. An important nui-

sance factor in this case is the execution-rate of activities which can be modeled by

warping of the time domain using order-preserving diffeomorphisms, which have geo-

metric constraints. To this end, I build a differentiable module Temporal Transformer

Network (TTN) that can generate such warping functions, satisfying the required con-

straints exactly, which are used to undo the effect of rate variations leading to better

representations for rate-invariance, and the same time, improve discriminative power.

This module can be easily integrated with classification architectures and trained

end-to-end using standard backpropagation.

1.3 Regression on Non-Euclidean Spaces

An important idea presented in Chapter 5 is that of building certain kinds of invari-

ances into neural network with the aid of differentiable layers that enforce geometric
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constraints. In Chapter 6, I first pose the general question of using neural networks to

perform regression on Riemannian manifolds, i.e mapping inputs to points on spaces

which have specific geometric constraints and do not obey conventional vector space

arithmetic. I focus on regression on the Grassmann manifold and I describe how

this method can be used to train a deep network to map to illumination invariants

for human face recognition, given a single face image under an unknown illumina-

tion condition. These illumination invariants are points on the Grassmann manifold.

I propose two methods to solve this problem and demonstrate that incorporating

designs that respects the underlying geometry in terms of satisfying constraints as

well as meaningful loss functions, leads to significant improvements over conventional

neural networks.

Finally, in Chapter 7, I summarize the contributions I have made and discuss

directions for future research.
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Chapter 2

CONVOLUTIONAL NEURAL NETS FOR RECONSTRUCTION OF

COMPRESSIVELY SENSED IMAGES

In this chapter, I will demonstrate the usefulness of developing single, composite

scores that are continuous and continuously updated for the purpose of building real-

time feedback systems for movement training.

2.1 Introduction

Images and video data are now ubiquitous, and computer vision has grown tremen-

dously with new applications being developed continuously in health-care, defence etc.

Depending on the application, many constraints may arise when we build devices and

algorithms to be deployed in the real world. In this chapter, we focus on two such

constraints. Sensor costs can be prohibitively expensive in certain imaging modali-

ties. For example, in short-wave infrared (SWIR) and medium-wave infrared (MWIR)

imaging, the sensor cost can dominate the entire imaging system cost. Bandwidth

and power constraints arise in mobile devices, surveillance applications, imagers in

space probes etc. An effective way of designing algorithms, while satisfying these

constraints to a large extent, is through compressive sensing.

Compressive Sensing (CS) is a signal acquisition paradigm that integrates sam-

pling and compression into a single step performed by front-end hardware. CS theory

tells us that one can acquire a small (relative to the ambient dimension) number of

measurements which are random projections of a sparse signal and later reconstruct

the entire signal perfectly by solving an inverse problem [26]. In the case of natural

images, sparsity or compressibility of natural images in transform domains (such as
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wavelets) is exploited for this purpose. This sub-Nyquist sampling feature of CS is

particularly attractive in applications where sensing time (e.g. magnetic resonance

imaging) or bandwidth (e.g. surveillance) is a constraint. One of the first camera

architectures to be developed based on CS is the single pixel camera [120] and is com-

mercially produced by the InView Corporation 1 . This camera, as the name suggests,

consists of just one photodiode that operates at the required wavelengths and thus is

suitable in applications like SWIR imaging where sensor cost is the main constraint.

It is also worth mentioning that effort has been made in miniaturizing compressive

imagers for possible use in mobile devices, cf. [132]. Here, the authors also show that

such sensors can be more energy efficient than their traditional counterparts.

In order to employ such a camera in computer vision for image recognition, track-

ing etc., a natural pipeline emerges. Once the image is reconstructed from the low-

dimensional CS measurements, existing computer vision algorithms can be used with-

out modification. However, iterative reconstruction algorithms form a computational

bottleneck in the pipeline. It may take as many as 5 minutes on a CPU (Table 2.2)

to reconstruct a single image of size 256 × 256 using one of these algorithms. This

is unacceptable in applications where inference needs to be done in real-time. These

algorithms are also ineffective at low measurement rates below 0.1 for images, which

is where the advantages of CS are most evident in terms of data reduction. In this

chapter, we propose a new reconstruction algorithm that overcomes these drawbacks

and is capable of yielding good quality images in real time. Inspired by the recent

success of deep Convolutional Neural Networks (CNNs) in computer vision tasks such

as super-resolution [39, 40], semantic segmentation [55], [113] etc., we design a novel

architecture to map compressive measurements of an image block to the reconstructed

image block. Once the architecture (and other hyper-parameters such as the learn-

1http://inviewcorp.com/technology/compressive-sensing/
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ing rate schedule) is fixed, our approach is entirely data-driven which means that all

parameters of the network are learned end-to-end based on training data.

2.1.1 Contributions

1. We describe a CS reconstruction algorithm called ReconNet, that is non-iterative

and 3 orders of magnitude faster than conventional iterative approaches. Re-

conNet – ReconNet (Euc) trained using Euclidean loss was introduced in its

earlier version [96]. Here, we propose ReconNet (Euc + Adv) trained using

a combination of Euclidean and adversarial loss.

2. We carry out extensive experiments on a standard test dataset by simulating

CS in software and show that our algorithm produces superior quality recon-

struction in terms of PSNR at low measurement rates of 0.1 and below, as well

as in the presence of noise. We also show that the ReconNet variant with ad-

versarial loss results in sharper reconstructions and improved PSNRs at higher

measurement rates than the vanilla ReconNet with just the Euclidean loss [96].

3. We demonstrate the robustness of our network to arbitrary sensor noise by

showing high quality reconstructions from real CS measurements obtained using

a scalable block compressive camera, although the network is trained using a

synthetic set. This dataset will be released for public use.

4. The network complexity of ReconNet [96] is concentrated in the first fully con-

nected layer which accounts for more than 80% of the parameters at higher

measurement rates. We propose circulant layers as an alternative to this layer

which greatly reduces the number of weights. We verify experimentally that

even with a 95% reduction in the number of parameters in the first layer, the

drop in PSNR is about 1-2 dB for a wide range of measurement rates.
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5. Finally, we make the important observation that even reconstructions at very

low measurement rates of about 0.01 retain sufficient semantic content that

allow for effective high-level inference such as object tracking.

In Section 2.3.3, we modify the loss function to include adversarial loss which gives

sharper reconstructions and higher PSNRs. In Section 2.7, we describe joint learning

of the measurement matrix and the reconstruction algorithm and show supporting

results. In Section 2.9, circulant layers are used to reduce the network complexity. In

Section 2.8, additional results on reconstruction of real data are presented based on

the new variants of ReconNet proposed.

2.2 Background and Related Work

We review relevant literature from compressive sensing, computer vision and deep

learning here.

2.2.1 Compressive Sensing

As mentioned in Section 2.1, compressive sensing (CS) or compressive sampling is

a relatively new paradigm in signal processing developed in the mid 2000s [26]. Here,

we have a linear signal acquisition model (performed by hardware) as follows. For

a signal x ∈ Rn, the measurement vector obtained via CS, henceforth referred to as

compressive measurements, denoted by y ∈ Rm is given by

y = Φx, m << n, (2.1)

where Φ ∈ Rm×n is called the measurement matrix. Recovering x from y is

an inverse problem and not admit a unique solution in general. Researchers have

shown theoretically that as long as m = O(s log(n
s
)), where s is the number of non-

zeros in x when expressed in a transform domain Ψ and the entries of Φ are drawn
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from a sub-Gaussian distribution such as a Gaussian, Bernoulli etc., it is possible

to recover x from y perfectly [42], [25]. In this chapter, the data type of interest is

natural images and it is worth mentioning that natural images, although not sparse,

are “compressible” in the wavelet domain. The recovery/reconstruction problem has

received a great amount of attention in the past decade and we briefly discuss the

main algorithms and their drawbacks next.

Iterative algorithms for reconstruction

Several algorithms have been proposed to reconstruct images from CS measurements.

The earliest algorithms leveraged the traditional CS theory described above [42, 25,

24] and solved the l1-minimization in Eq. 2.2 with the assumption that the image is

sparse in some transform-domain like wavelet, DCT, or gradient.

min
x

||Ψx||1 s.t ||y −Φx||2 ≤ ε. (2.2)

However, such sparsity-based algorithms did not work well, since images, though

compressible, are not exactly sparse in the transform domain. This heralded an

era of model-based CS recovery methods, wherein more complex image models that

go beyond simple sparsity were proposed. Model-based CS recovery methods come

in two flavors. In the first, the image model is enforced explicitly [45, 12, 91, 145],

wherein in each iteration the image estimate is projected onto the solution set defined

by the model. These models, often considered under the class of ‘structured-sparsity’

models, are capable of capturing the higher order dependencies between the wavelet

coefficients. However, generally a computationally expensive optimization is solved

to obtain the projection. In the second, the algorithms enforce the image model

implicitly through a non-local regularization term in the objective function [136, 179,

41]. Recently, a new class of recovery methods called approximate message passing
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(AMP) algorithms [43, 155, 121] have been proposed, wherein the image estimate is

refined in each iteration using an off-the-shelf denoiser.

2.2.2 CNNs for Per-Pixel Prediction Tasks

There has been a great amount of exciting research in areas like semantic segmen-

tation [55], [113], depth estimation [47], surface normal estimation [163] etc., where

CNNs have outperformed all traditional methods. In such an application, an input

image is mapped to a similar-sized output. Another related class of tasks which is of

interest here is ill-posed inverse problems – problems where the output is of a higher

dimension than that of the input. Example include automatic colorization [32], 3D

reconstruction a single image [84] and super-resolution (SR) [39], [40] and image de-

noising [180]. For SR, the authors design a CNN, SRCNN, that takes an input image

that is upsampled using bicubic interpolation and produces a super-resolved version

of the original image of a lower resolution. The network architecture we design in

this chapter is inspired by SRCNN. The reason for this is that the problem of CS

reconstruction can be seen as a generalization of SR. However, although both CS

recovery and SR can be cast as solving an inverse problem y = Φx, they are not

considered under the same umbrella. The reason for this is discussed in more detail

in Section 2.3.

To summarize, we make the observation that any neural network can be viewed as

an algorithm that allows for efficient learning of a non-linear mapping from the input

to the desired output. In our case, we apply this notion to learning the (necessarily

non-linear) mapping from CS measurements to the image. This is also significant

since 2D CNNs have until now been mainly shown to be useful for inputs which are

images. CS measurements, however, are typically random projections of the scene

and do not have the spatial correlational structure present in natural images. Thus,
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they cannot be used directly as inputs to a 2D CNN. In Section 2.3, we describe the

architecture that aims at resolving this apparent incompatibility.

Generative Adversarial Networks

In section 2.3.3, we discuss a modification of the loss function for ReconNet based

on the recently popular Generative Adversarial Network (GAN) framework. It has

been shown recently that for inverse problems such as image inpainting [133], super-

resolution [102] and surface normal estimation [174], using a GAN framework yields

sharper results, than by using just Eucliden loss. This is simply due to the averaging

effect of Euclidean loss minimization. As described in the papers by Goodfellow et al

[57] and Radford et al. [137], i.e., in the original formulation, a GAN learns to model

the image distribution where the image is represented as a random variable R in an

unsupervised fashion by learning a mapping from a small dimensional uniform random

variable, z (which we can sample easily) to the image. In a GAN, two networks – a

generator, G with parameters ΘG and a discriminator, D, with parameters ΘD – are

trained in an alternating fashion. G is a neural network responsible for generating an

image for a given input. D is another neural network which learns to classify between

“real” images and images output by the generator – “fake” images. During training,

D tries to minimize this classification error by updating ΘD. At the same time, G

tries to maximize the loss of D by updating ΘG, thereby trying to “fool” D. The

mathematical form of the optimization is given by

min
ΘG

max
ΘD

ER[log(D(r))] + EZ [log(1−D(G(z)))] (2.3)

Empirically, it has been shown that this optimization results in D being unable

to classify better than chance and G learning to model the data distribution and

generate “realistic” images.
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2.2.3 Purely Data-Driven Approaches for CS Image and Video Reconstruction

Using Deep Learning

There are several works that propose CS recovery algorithms based on deep

learning. Many of these algorithms are based on designing the neural net architec-

ture based on unrolling earlier iterative schemes that take into account signal priors

[58, 15, 37, 80, 152, 30, 123]. However, in this work, we focus on methods that are

purely data-driven and make no assumptions on the signal model. Ali et al. [126] first

presented a stacked denoising auto-encoders (SDAs) based non-iterative approach for

problem of CS reconstruction. In the preliminary version of this chapter [96], we pro-

posed a convolutional architecture, which has fewer parameters, and is easily scalable

to larger block-size at the sensing stage. One of the drawbacks of the approaches pre-

sented in both [126] and [96] is that the reconstructions are performed independently

on each block. It results in the approaches not utilizing the strong dependencies that

exist between the reconstructions of different blocks. In order to address this, Ali et

al. [124] propose a network that can operate on the CS measurements of the entire

image, while forcing the fully connected layer to be ΦT . Ali et al. propose another

method which learns to simultaneously compute non-linear measurements and the

reconstruction layers using an autoencoder framework [125]. Yao et al. [173] modify

the ReconNet architecture [96] by adding residual connections and present improved

reconstruction performance. Dave et al. [37] show that by enforcing an image prior

which captures long term spatial dependencies, one can recover better quality recon-

structions than the iterative counterparts. Chakrabarti [27] proposes to learn the

sensor multiplexing pattern in conjunction with the non-iterative reconstruction net-

work. The success of the deep learning approaches in compressive recovery problem

has not been limited to the image reconstruction problem. Researchers have shown
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that they can be applied to the CS video recovery problems as well [73, 169]. Iliadis

et al. [74] describe a novel encoder-decoder neural architecture in order to jointly

learn a binary measurement matrix and the reconstruction for videos. For a more

in-depth discussion of deep neural networks for inverse problems in imaging, please

read the recent survey by Lucas et al. [114]

FC
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Figure 2.1: This shows the overview of the proposed non-iterative CS reconstruction

algorithm: ReconNet. The architecture that we use for all the experiments operates

using block CS. A scene is divided into blocks of size 33× 33 and CS measurments of

each block is passed through the ReconNet to obtain the reconstructed image patch.

As a post-processing step, the image thus obtained is passed through BM3D denoiser

to get rid of the blocky artifacts.

2.3 ReconNet

In this section, we describe in detail the network architecture and other implemen-

tation details. Figure 3.4 shows the overview of the proposed algorithm. Each image

is divided into non-overlapping whose CS measurements are obtained separately. We

need to reconstruct each image block from its compressive measurements. Then, the

block reconstructions are arranged to form an image and passed through a denoiser

to remove the blocky artifacts and produce the final reconstruction.
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Although our network architecture was inspired by SRCNN [39], [40], the input

in our case is a one-dimensional vector of CS measurements without any spatial

structure, unlike an image in the case of SRCNN. Thus, in order to employ a CNN for

reconstruction, we need to first resolve this incompatibility. One way to work around

this problem is to seek inspiration from the SRCNN pipeline where an initial high

resolution image is first obtained using bicubic interpolation and is used as the input

to 3-layer CNN which produces the final super-resolved image. In our case, we could

use an initial image estimate obtained using one of the many iterative approaches and

then use the network to refine it to produce the final reconstruction. Although this is

straightforward conceptually, the question of how many iterations of the algorithm to

run to get the initial image estimate is hard to answer. While increasing the number

of iterations improves the initial estimate, it also increases the run-time, thus moving

away from the goal of fast implementation. On the other hand, too few iterations

yield poor estimates. Therefore, we opt for a better and a more elegant solution – to

use a fully connected layer at the beginning in order map the CS measurement vector

to a two-dimensional array that may serve as an initial image estimate. However,

all the parameters of the network are learned end-to-end. The presence of the fully

connected layer, is also the main reason why we need to operate block-wise instead

of trying to reconstruct the whole image directly. If we were to do the latter, the

number of parameters in the fully connected layer would be too large to store the

weights and would be easily prone to overfitting. We discuss alternatives to the fully

connected layer later in Section 2.9.

2.3.1 ReconNet Unit Architecture

The input to the network is a vector of size m × 1 denoted by Φx, where Φ is

the measurement matrix and x is the vectorized image block of size n× 1 such that
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Figure 2.2: Each ReconNet Unit consists of 3 convolutional layers with ReLU non-

linearity. Using appropriate zero-padding, the size of each feature map is always kept

constant and equal to the block size.

m << n. In all the experiments, we set the block-size to be 33 × 33, (n = 1089) as

this gives a good trade-off between reconstruction quality and network complexity.

The first layer is a fully connected layer that takes compressive measurements as

input and outputs a feature map of size 33 × 33. This feature map is then input

to a series of ‘ReconNet units’. Each ReconNet unit consists of three convolutional

layers as shown in Figure 2.2. ReLU non-linearity is employed. Using appropriate

zero-padding, all feature maps produced by all convolutional layers are set to size

33× 33, which is equal to the block size.

The first convolutional layer uses kernels of size 11× 11 and generates 64 feature

maps. The second convolutional layer uses kernels of size 1 × 1 and generates 32

feature maps. The third convolutional layer uses a 7×7 kernel and generates a single

feature map. The output of the third layer of the last ReconNet unit is also the

output of the network.

Once all the blocks of an image have been reconstructed, the entire image is input

to a denoiser to reduce blocky artifacts that arise as a result of block-wise processing.

We choose BM3D [36] as the denoiser as it is fast and yields good results.
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2.3.2 Training Data

Ground Truth: We uniformly extract patches of size 33 × 33 from 91 natural

images (these are the same images used for training in [39] and can be found on this

website 2 ) with a stride equal to 14 to form a set of 21760 patches. We retain

only the luminance component of the extracted patches (during the test phase, in

order to reconstruct RGB images, we replicate the network to recover the individual

channels). These image blocks form the desired outputs or the ground truth of our

training set. Experiments indicate that this training set is sufficient to obtain very

competitive results compared to existing CS reconstruction algorithms.

Input data: To train our networks, we need CS measurements corresponding to each

of the extracted image blocks. To this end, we simulate noiseless CS as follows. For a

given measurement rate, we construct a measurement matrix, Φ by first generating a

random Gaussian matrix of appropriate size, followed by orthonormalizing its rows.

Then, we apply y = Φx to obtain the set of CS measurements, where x is the

vectorized version of the luminance component of an image block. Thus, an input-

label pair in the training set can be represented as (Φx,x). We train networks for

four different measurement rates (MR) = 0.25, 0.10, 0.04 and 0.01. Since, the total

number of pixels per block is n = 1089, the number of measurements n = 272, 109, 43

and 10 respectively.

2.3.3 Loss Function

In this section, we describe the two variants of ReconNet based on the loss function

used in training.

2mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN train.zip
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Euclidean Loss

The first variant of ReconNet [96] employs the Euclidean loss i.e., the average recon-

struction error over all the training image blocks, given by

L(Θ) =
1

B

B∑
i=1

||f(yi,Θ)− xi||2, (2.4)

and is minimized by adjusting the parameters (weights and biases) in the network,

Θ using mini-batch gradient descent with backpropagation. B is the total number

of image blocks in one batch of the training set, xi is the ith patch and f(yi,Θ)

is the network output for ith patch. We set the batch size, B = 128 for all the

networks. For each measurement rate, we train two networks, one with random

Gaussian initialization for the fully connected layer, and one with a deterministic

initialization, and choose the network which provides the lower loss on a validation

set. For the network with deterministic initialization, the jth weight connecting the

ith neuron of the fully connected layer is initialized to be equal to ΦT
i,j. In each case,

weights of all convolutional layers are initialized using a random Gaussian with a fixed

standard deviation. The learning rate is determined separately for each network using

a linear search. Through experiments, we have found that two ReconNet units (6

convolutional layers in total) produce good performance. Adding further ReconNet

units does not produce a significant boost in reconstruction quality and adds to

network complexity. All networks are trained on an Nvidia Tesla K40 GPU using

Caffe [79] for about a day (about 106 iterations) each even though the reconstruction

errors are very close to the final value within few hours. For testing, we choose the

best network by using a validation set. We refer to this network as ReconNet (Euc),

which uses Gaussian matrix for sensing and only the Euclidean loss function.
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Euclidean + Adversarial Loss

Here, we describe the second variant of ReconNet by incorporating the GAN frame-

work for CS reconstruction similar to [133]. See Section 2.2.2 for an overview of GANs

and notation. In our case, ReconNet acts as G. We build D that takes as input

either the reconstructed block from ReconNet (“fake”) or the desired block (“real”)

and outputs the probability of the input being a real image block. The loss function

of D is the sum of two cross-entropy losses shown below:

LD =
1

B

B∑
i=1

(LCE(D(xi), 1) + LCE(D(G(yi)), 0)). (2.5)

The first loss term measures how well D is able to classify the real images while

the second loss term measures its ability to classify the fake images generated by

ReconNet, i.e, G. Following the same notation as before, yi denotes the ith input

training CS measurement vector and xi denotes the ground truth 33 × 33 image

block associated with it. LCE() is the cross-entropy loss commonly used in binary

classification, given by

LCE(ĉ, c) = −c log ĉ+ (1− c) log (1− ĉ) (2.6)

The loss for G i.e., ReconNet is a linear combination of the Euclidean loss (from

Equation 2.4) and the adversarial loss:

LG =
λrec
B

B∑
i=1

||G(yi)− xi||2 +
λadv
B

B∑
i=1

LCE(D(G(yi)), 1) (2.7)

The protocol for initializing and training the G portion is the same as in the case

of Euclidean loss (see Section 2.3.3). However, we use just one ReconNet unit in

this case as the reconstruction quality does not improve and also becomes harder

to train due to the presence of D in addition to G. Since G is fixed, the remaining
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hyperparameters that need to be determined are the values of λrec, λadv and the

structure of D, which is another, much smaller, CNN. These hyperparameters were

determined by measuring the reconstruction performance on the validation set for

different settings. We use a D with the following architecture. It has 3 convolutional

layers and each layer generates four feature maps of size 4 × 4 filters. At the end

of the third convolutional layer, a fully connected layer maps the feature maps to a

single probability value. Dropout with probability equal to 0.5 is used for this layer.

λrec and λadv are set to 1 and 0.0001 respectively. Adam optimizer is used for learning

[92]. The learning rates for G and D are set to 10−3 and 10−5 respectively and the

momentum is set to 0.9. The training of these networks is done in an alternating

fashion using TensorFlow. We update ΘG twice for every update of ΘD since this

leads to faster convergence. Training is carried out for 105 iterations which means

that ΘG are updated 2 × 105 times and ΘD are updated 105 times. We refer to this

network as ReconNet (Euc + Adv), which uses Gaussian matrix for sensing and

the Euclidean + adversarial loss function.

2.4 Synthetic Experiments

In this section, we conduct extensive experiments on simulated CS data, and com-

pare the performance of ReconNet with state of the art CS image recovery algorithms,

both in terms of reconstruction quality and time complexity.

Baselines We compare both variants of our algorithm described in Section 2.3 with

three iterative CS image reconstruction algorithms, TVAL3 [103], NLR-CS [41] and

D-AMP [121]. We use the code made available by the respective authors on their

websites. Parameters for these algorithms, including the number of iterations, are set

to the default values. Since the reconstruction is performed block-wise, blocky arti-

19



facts arise. We use BM3D [36] denoiser to reduce these artifacts since it gives a good

trade-off between time complexity and reconstruction quality. The code for NLR-CS

provided on author’s website is implemented only for random Fourier sampling. The

algorithm first computes an initial estimate using a DCT or wavelet based CS recovery

algorithm, and then solves an optimization problem to get the final estimate. Hence,

obtaining a good estimate is critical to the success of the algorithm. However, using

the code provided on the author’s website, we failed to initialize the reconstruction for

random Gaussian measurement matrix. Similar observation was reported by [121].

Following the procedure outlined in [121], the initial image estimate for NLR-CS is

obtained by running D-AMP (with BM3D denoiser) for 8 iterations. Once the initial

estimate is obtained, we use the default parameters and obtain the final NLR-CS

reconstruction.

We compare with [126] which presents an SDA based non-iterative approach to

recover from block-wise CS measurements. Using our own implementation of SDA,

we show that ReconNet outperforms SDA.

We also create another deep network baseline based on the ReconNet architecture.

Once we compute the compressive measurements y using the camera, we can project

the measurements back into the pixel domain by pre-multiplying with ΦT to form

a pseudo-image i.e., x̂ = ΦTy. We then use the pseudo-image as an input to the

ReconNet units directly without the first fully-connected layer. We note this archi-

tecture was suggested by Ali et al. for reconstruction of CS measurements [125] and

by Lohit et al. [109] in the case of direct inference from compressive measurements.

This architecture has far fewer learnable parameters and all the weights are in the

convolutional layers, as the first layer is not learned.

For fair comparison, we denoise the image estimates recovered by baselines as

well. The only parameter to be input to the BM3D algorithm is the estimate of the
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standard Gaussian noise, σ. To estimate σ, we first compute the estimates of the

standard Gaussian noise for each block in the intermediate reconstruction given by

σi =
√
||yi−Φxi||2

m
, and then take the median of these estimates.

2.4.1 Reconstruction of Simulated CS Data

For our simulated experiments, we use a standard test set of 11 grayscale images,

compiled from two sources 3 4 . We conduct both noiseless and noisy block-CS

image reconstruction experiments at four different measurement rates 0.25, 0.1, 0.04

and 0.01. We train two sets of networks – The first set of networks is ReconNet

Variant 1 trained with just Euclidean loss. The second set is ReconNet variant 2

trained with Euclidean + adversarial loss.

Reconstruction from noiseless CS measurements

For a given test image, to simulate noiseless block-wise CS, we first divide the image

into non-overlapping blocks of size 33× 33, and then compute CS measurements for

each block using Equation 2.1. For each measurement rate, the sensing matrix used is

the same random Gaussian measurement matrix as was used to generate the training

data for the network corresponding to this measurement rate in Section 2.3.2. The

PSNR values in dB for both reconstructions before passing through the denoiser (in-

dicated by w/o BM3D) as well as final denoised versions (indicated by w/ BM3D) for

all the measurement rates are presented in Table 2.1. It is clear from the PSNR values

that both variants of our algorithm outperforms traditional reconstruction algorithms

at low measurement rates of 0.1, 0.04 and 0.01. Also, the degradation in performance

with lower measurement rates is more graceful. Further, in Figure 2.3, we show the

3https://web.archive.org/web/20160403234531/http://dsp.rice.edu/software/DAMP-toolbox

4http://see.xidian.edu.cn/faculty/wsdong/NLR Exps.htm
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final reconstructions of parrot and house images for various algorithms at measure-

ment rate of 0.1 compared to ReconNet (Euc). From the reconstructed images, one

can notice that our algorithm, as well as SDA, are able to retain the finer features of

the images while other algorithms fail to do so. NLR-CS and DAMP provide poor

quality reconstruction. Even though TVAL3 yields PSNR values comparable to our

algorithm, it introduces undesirable artifacts in the reconstructions.

For visual comparison between the baseline of ΦTΦx + 2 ReconNet units, Recon-

Net (Euc) and ReconNet (Euc + Adv), see 1st and 2nd columns of Figure 2.8. We

observe that at higher measurement rates of 0.25 and 0.10, there is improvement in

reconstruction of the test set with ReconNet (Euc + Adv) over ReconNet (Euc) both

in terms of PSNR (∼1 dB increase) and visual quality. The reconstructed blocks are

sharper than those obtained in the case of Euclidean loss. At lower measurement rates

of 0.04 and 0.01, PSNR values decrease for ReconNet (Euc + Adv) when compared

to ReconNet (Euc). However, we can observe that more detail is preserved and the

reconstructed images tend to be sharper when adversarial loss is used, in all cases.

Performance in the presence of noise

We demonstrate that our algorithm is robust to Gaussian noise by performing recon-

struction from noisy CS measurements. We use ReconNet (Euc) for all the experi-

ments here and we expect the same trends to follow for other variants as well. We

perform this experiment at three measurement rates - 0.25, 0.10 and 0.04. We empha-

size that we do not train separate networks for different noise levels but use the same

networks as used in the noiseless case. In order to simulate the noisy CS process, we

add standard random Gaussian noise of increasing standard deviation to the noiseless

CS measurements (from the previous section) of each block. In each measurement

rate, we test the algorithms at three levels of noise corresponding to σ = 10, 20, 30
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Ground Truth
Parrot

House

NLR-CS
PSNR: 14.1562 dB

PSNR: 14.7976 dB

TVAL3
PSNR: 23.1616 dB

PSNR: 26.3154 dB

D-AMP
PSNR: 21.6421 dB

PSNR: 24.7059 dB

SDA
PSNR: 22.3468 dB

PSNR: 26.0677 dB

Ours
PSNR: 23.2287 dB

PSNR: 26.6573 dB

Figure 2.3: Comparison of reconstruction performance of various algorithms with

ReconNet (Euc) in terms of PSNR (in dB) and visual quality at MR = 0.1 and

no noise for Parrot and House images. Our algorithm outperforms all the iterative

algorithms. SDA also yields competetive results. The zoomed in portions show that

finer structures are better retained in our case.

(3.9%, 7.8% and 11.7% of the dynamic range (0-255) respectively), where σ is the

standard deviation of the Gaussian noise distribution. The reconstructions obtained

from the algorithms are denoised using BM3D. The mean PSNR for various noise

levels for different algorithms at different measurement rates are shown in Figure 2.4.

It can be observed that our algorithm beats all other algorithms at high noise levels.

This shows that the method proposed in this chapter is robust to all levels of noise.

2.4.2 Time Complexity

In addition to competitive reconstruction quality, for our algorithm without the

BM3D denoiser, the computation is real-time and is about 3 orders of magnitude

faster than traditional reconstruction algorithms. However, it is important to

note that the codes for the traditional reconstruction algorithms are mainly

in Matlab, and hence, it may be amenable to further optimization (for ex-
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ample, by using faster routines in C++). We compare various algorithms in

terms of the time taken to produce the reconstructions of a 256 × 256 image from

noiseless CS measurements at various measurement rates. For traditional CS algo-

rithms, we use an Intel Xeon E5-1650 CPU to run the implementations provided

by the respective authors. For ReconNet, we report computational time for both

the CPU implementation of Caffe on Intel Xeon E5-1650 as well as the GPU imple-

mentation on an inexpensive mid-range Nvidia GTX 980 GPU. Note that, for our

algorithm, we use a network with two ReconNet units. The average time taken for

the all algorithms of interest are given in table 2.2. Depending on the measurement

rate, the time taken for block-wise reconstruction of a 256× 256 on the GPU for our

algorithm is about 145 to 390 times faster than TVAL3, 1400 to 2700 times faster

than D-AMP, and 14782 to 15660 times faster than NLR-CS. In the case of CPU

implementation, the speed-ups are 5.6 to 15 times faster, 52.9 to 105.2 times faster

and 569 to 600 times faster compared to TVAL3, D-AMP and NLR-CS respectively.

We believe that the speedup achieved by our algorithm is not solely because of the

utilization of the GPU. It is because unlike traditional CS algorithms, our algorithm

being CNN based relies on much simpler convolution operations, for which very fast

implementations exist. More importantly, the non-iterative nature of our algorithm

makes it amenable to parallelization. SDA, also a deep-learning based non-iterative

algorithm shows significant speedups over traditional algorithms at all MRs.

2.4.3 Comparison with LDAMP

In addition to purely data-driven (like ReconNet) and purely model-based iterative

algorithms (like D-AMP), there has been recent work on a new class of algorithms that

combines the two approaches. This is achieved by unrolling the iterative algorithms.

Although the reconstruction process is not entirely replaced by the neural network,
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Figure 2.4: The figure shows the degradation of performance of various algorithms

as the measurement rate and noise level in the CS measurements are increased. Our

algorithm exhibits a more graceful trend compared to the iterative apporaches and

outperforms them at low MRs and high noise levels.

the main operation of each iteration (denoising, in the case of D-AMP) is performed

by a trained neural network. Here, we compare ReconNet, which is a purely data-

driven algorithm, with Learned D-AMP (LDAMP) [123], which is the state of the art

in the class of algorithms obtained by unrolling the iterative algorithms. In LDAMP,

the iterations of D-AMP [121] are unrolled and using a trained neural network for

the denoiser in each iteration. We will refer to each unrolled D-AMP iteration as

a D-AMP unit. Each D-AMP unit contains a denoiser which is built using a CNN

with residual connections with 16 layers of 3× 3 filters and 64 feature maps in each

layer. The authors in [123] used 10 D-AMP units and thus, 160 layers of convolutions.

Based on the codes provided by the authors of LDAMP, we trained models for MRs

= 0.01, 0.04, 0.10 and 0.25.

We observe the following important differences in architecture. First, the 16-layer

CNN in each denoiser contains a little more than 5 × 105 parameters. Thus, using
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10 D-AMP units would result in 5 million parameters. Also, as shown in Table

2.3, the with identical hardware settings, the computation time for reconstruction is

between 36 times (for MR = 0.01) and 97 times (for MR = 0.25) that of ReconNet.

Thus, unlike ReconNet, LDAMP cannot be run in real-time with currently

available hardware. This is expected, given that number of convolutional layers in

LDAMP is 160 to that of ReconNet which has 6. Figure 2.5 shows the comparison

between LDAMP trained with different number of D-AMP units and Reconnet. For

low MRs 0.01 and 0.04, both methods yield very similar results. With 10 D-AMP

units, LDAMP is better than ReconNet by only 0.21 dB and 0.06 dB at MR = 0.04

and 0.01 respectively, in spite of the fact that ReconNet is about 36 and 45 times

faster, and contains about 72 and 150 times fewer learnable parameters at MR =

0.04 and 0.01 respectively. For higher MRs = 0.10 and 0.25, LDAMP is clearly

better with 10 D-AMP units by 6.02 dB and 2.37 dB respectively. However, the

improved reconstruction comes at the expense of huge computation cost, both in

terms of memory and time. Interestingly, ReconNet yields a performance comparable

to LDAMP with 5 D-AMP units at MR = 0.10 and 3 D-AMP units at MR = 0.25,

with far fewer parameters and is tens of times faster. The trends for LDAMP are

similar to that of iterative algorithms in that, while it is excellent at high MRs (for 10

D-AMP units), its performance falls much faster than ReconNet as MR is reduced.

Another important difference is that for LDAMP, the CS measurements are ob-

tained at the image-level and not the block-level. Therefore, the issue of blocky

artifacts appearing in the reconstructed image in the case of ReconNet, is not present

in LDAMP. We believe this to be an important reason for why LDAMP yields better

reconstructions, although at the expense of a lot more parameters and computation

time. We partly alleviate this issue for ReconNet using a denoiser post-reconstruction.

Perhaps more importantly, in the case of LDAMP, for an image size of 256×256, and
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Figure 2.5: Comparison of reconstruction performance of LDAMP versus ReconNet

at different MRs and different number of D-AMP units. At MRs = 0.25 and 0.10,

although LDAMP with many D-AMP units is significantly better than ReconNet,

this comes at a large expense of network parameters and computation, e.g. at MR =

0.10, ReconNet is 35 times lighter and 60 times faster than LDAMP with 10 D-AMP

units. Interestingly, the increased computation is not beneficial for LDAMP at MR

= 0.4 and 0.01 where both ReconNet and LDAMP (10 D-AMP units) perform nearly

at the same level in terms of PSNR. Note that BM3D is not used for ReconNet.

MR = 0.25, the measurement matrix Φ is of size 65536× 16378 ≈ 1 billion parame-

ters. This means that, unlike ReconNet, it is not clear if it is possible to learn the Φ

jointly with the reconstruction network, which we later show yields about 3 dB gain

in mean PSNR (Table 2.5).

27



2.5 Analysis of Trained Models

In the section, we provide some insight to the inner workings of ReconNet by vi-

sualizing intermediate outputs as well as the learned filters. The output feature map

after the fully connected layer, the first ReconNet unit and the second ReconNet unit

(also the final output) are shown in Figure 2.7 for the Cameraman image at MRs

= 0.25 and 0.1. As it can be seen from the images, the network is able to create a

very coarse approximation of the desired output image at the end of the fully con-

nected layer. The output at the end of the first ReconNet unit contains more high

frequency content of the final output. This is remarkable because the convolutional

layers, assume that spatial correlational structure is a property of the input on which

they are acting. Although the CS measurements have no such property, the convo-

lutional layers, through backpropagation, force the fully-connected layer to produce

an “image-like” output. It is to be noted that except designing the architecture, this

was not explicitly enforced and is simply a result of the optimization.

Figure 2.6 shows, both in spatial and frequency domain, the filters of different

convolution layers of the trained network at MR = 0.25. We make the observation

that they are very different from the filters learned in the case of inference tasks like

image recognition, where, for example, first layer filters may look like edge filters, and

filters in intermediate layers take on object-like appearances. This difference is not

unexpected, since the current task is that of image reconstruction, where one needs

to re-introduce low as well as high-frequency information through the layers, and one

does not need to learn invariances to deformations. While the filters shown do not

reveal significant structure in the spatial domain, their speckle-field like structure

in the frequency domain indicates that the filters enhance frequencies across a wide

spectral range in non-trivial ways.
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(a) conv 1 filters in spatial domain

(b) conv 3 filters in spatial domain

(c) conv 4 filters in spatial domain

(d) conv 6 filters in spatial domain

(e) 11 x 11 conv 1 filters in frequency domain

(f) 7 x 7 conv 3 filters in frequency domain

(g) 11 x 11 conv 4 filters in frequency domain

(h) 7 x 7 conv 6 filters in frequency domain

Figure 2.6: Visualizing some (smoothed) trained filters in the convolutional layers in

the spatial and frequency domains for MR = 0.25. The speckle-field like structure

in the frequency domain indicates that the filters enhance frequencies across a wide

spectral range in non-trivial ways.
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Figure 2.7: The figure shows the intermediate outputs for the Cameraman image.

Each row corresponds to a different MR. The first column shows the output obtained

at the end of the fully connected layer. The second column shows the output after

the first ReconNet unit. The third column shows the output of the network.

2.6 Efficient Training Strategy for New Measurement Matrix

In Section 2.3.2, a new network was trained from scratch for each MR. However, it

may not be practical to train a entirely new network just to operate a slightly different

MR or with a different Φ at the same MR. In this section, we show that for a new Φ

of a desired measurement rate, one does not need to train the network from scratch,

and that it may be sufficient to follow a suboptimal, yet effective and computationally

light training strategy outlined below, ideally suited to practical scenarios.

We adapt the convolutional layers (C1-C6) of a pre-trained network for the same

or slightly higher MR, henceforth referred to as the base network, and train only
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the first fully connected (FC) layer with random initialization for 1000 iterations (or

equivalent time of around 2 seconds on a Titan X GPU), while keeping C1-C6 fixed.

The network used here is ReconNet (Euc) [96] and we expect similar trends for other

variants. The mean PSNR (without BM3D) for the test set at various MRs, the time

taken to train models and the MR of the base network are given in Table 2.4. From

the table, it is clear that the overhead in computation for new Φ is trivial, while

the mean PSNR values are comparable to the ones presented in Table 2.1. One can

obtain better quality reconstructions at the cost of more training time if C1-C6 layers

are also fine-tuned along with FC layer.

2.7 Learning the Measurement Matrix

Until now we have considered CS reconstruction where the measurements are

acquired with a predefined sensing matrix – a random Gaussian matrix. However,

with a small addition to the the ReconNet framework, we show that it is possible

to jointly, in a single network, learn the measurement matrix (Φ) as well as the

reconstruction algorithm. The earlier framework describes a network that map the

input CS measurements to the output image block. Here, we attach an additional

fully connected layer in the front that maps an input image of size 33×33 to a vector

of dimension m. Thus the input-desired output pair in the training set is (x,x). This

can be seen as a variation of the autoencoder, with the constraint in the architecture

that the “encoder” part of the network must be a single linear layer. This constraint

arises because of the nature of the single pixel camera which can only capture linear

projections of the scene. After training, the weights of the first fully connected layer

correspond to the (locally) optimal measurement matrix, and the all the following

layers form the reconstruction network.
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Figure 2.8: The figures show reconstruction results for the “Parrot” image at two

measurement rates of 0.1 and 0.04 from measurements obtained using different vari-

ants of ReconNet. We can observe that learning the measurement matrix as well as

using adversarial loss while training produce superior quality reconstruction (both

independently and together) at both measurement rates when compared to the basic

version of ReconNet. MM refers to the measurement matrix.

As before, we train two sets of networks: ReconNet (Euc, learn Φ) – jointly

learning Φ and reconstruction algorithm using only Euclidean loss and ReconNet

(Euc + Adv, learn Φ) – jointly learning Φ and reconstruction algorithm using

Euclidean + adversarial loss. The training set consists of 21760 image patches from

the same set of 91 images. Since we are learning Φ as well as the reconstruction

network, each image patch in the training set forms both the input and the desired

output image patch. Table 2.5 shows the mean PSNR obtained on the test set using

variants of ReconNet with the learned Φ compared to ReconNet with the random

Gaussian Φ. We observe a significant gain in terms of PSNR at the lower measurement

rates – 2.83 dB, 3.15 dB and 2.17 dB at MR = 0.10, 0.04 and 0.01 respectively without
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using adversarial loss. With adversarial loss, the gains are 3.25 dB, 3.33 dB and 2.4

dB at MR = 0.10, 0.04 and 0.01 respectively. Figure 2.8 illustrates the differences in

visual quality obtained for the Parrot and House images at two different measurement

rates of 0.1 and 0.04 for all four variants of ReconNet. Clearly, more detail is preserved

in the case of learned Φ and using adversarial loss further sharpens reconstructions.

2.8 Reconstruction of Real Data From Compressive Imager

The previous section demonstrated the superiority of our algorithm over tradi-

tional algorithms for simulated CS measurements. Here, we show that our networks

trained on simulated data can be readily applied to the real world, by reconstruct-

ing images from CS measurements obtained from our block SPC. We compare our

reconstruction results with other algorithms.

2.8.1 Scalable Optical Compressive Imager Testbed

Here we employ a compressive imaging system implementation [87],[86], which is

scalable with respect to field of view and/or resolution and avoids limitations inherent

in a single-pixel implementation [120]. Scalability is achieved via a block wise mea-

surement approach. The compressive imaging system is implemented via two imaging

arms and a discrete mirror device (DMD) as shown in Figure 2.9. The DMD is an

array of electronically controllable bi-stable mirrors of 10.8µm pitch, which modu-

lates the incoming light intensity field with 8 bits gray-scale transmission patterns.

Since the sensing matrix contains both positive and negative values, two sets of mea-

surements are obtained – one for the positive entries and the other for the negative

entries – the difference is used as the measurements from the camera. The first arm

of the system images the object or scene onto the DMD surface, mapping in to an

area of about 262 × 262 micro-mirror element (or about 2.85mm). The second im-
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ages the DMD plane onto a detector array, which is 1/3” 640×480 CCD with a pixel

pitch/size of 7.4µm operating at 12-bit quantization. Given the object, the DMD and

the sensor planes that optical conjugates, the block of modulated patterns are each

mapped to a small number of contiguous detectors whose outputs are digitally com-

bined to return a single measurement per block. Thus the blocks and their mapping

to group of detectors essentially behave like parallel Single Pixel Cameras (SPC). In

this architecture, the modulation patterns on the DMD are generated by unfolding

each row of the projection matrix Φ, which are temporally scanned to acquire all the

measurements, in parallel for all blocks.

It is important to highlight that one of the underlying challenges of implementing

such a compressive imaging hardware is to ensure the correct calibration of the system,

i.e. to minimize the deviation from the actual physical system measurement model

to the idealized (and usually simplified) one. With this testbed, we have partly

automated this arduous calibration process. We employ uniform white object and

display a series of known transmission patterns on the DMD to localize and identify

the pixels of the sensor associated with a particular block. We refer to [87] and [86] for

more details about this calibration process. This calibration process thus dynamically

discovers the distorted mapping between the DMD plane and the sensor plane and

also measures the bias and scaling non-uniformities across the blocks. Finally, the

target images are shown on a display facing the imaging arm and the system, which

are pre-corrected for the gamma correction applied by the display panel.

2.8.2 Reconstruction Experiments

We use the set up described above to obtain CS measurements for each of the

blocks (of size 33×33) in the scene. Operating at MR’s of 0.1 and 0.04, we implement

the 8-bit quantized versions of two kinds of measurement matrices:
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Figure 2.9: Compressive imager testbed layout with the imaging arm in the center,

and 2 DMD imaging arms on the side.

1. Orthogonalized random Gaussian matrices used to train networks in Section

2.3.2 and Section 2.3.3

2. Learned measurement matrices, from Section 2.7 and Section 2.3.3. In this

case, the measurement matrices are implemented by the camera hardware by

programming the DMD and the outputs are the CS measurements that are fed

into the 2nd of the trained networks directly.

Note that the CS measurements are input to the corresponding networks trained on

the simulated CS measurements; no further training is done on the real data.

Using these measurements we test four variants of ReconNet – two kinds of mea-

surement matrices (Gaussian or learned) and two kinds of loss functions(Euclidean

or Euclidean + Adversarial Loss). Figures 2.10a and 2.10b show the reconstruction

results MR = 0.10 and 0.04 respectively. The first and second columns show the

reconstructions obtained using D-AMP and TVAL3 which are iterative algorithms.

The next five columns show the results obtained using the variants of ReconNet. It

can be observed that our algorithm (columns 3,4 and 5) yields reconstructions that

preserve more detail compared to the iterative approaches, thus demonstrating that

our algorithm is robust to unseen sensor noise. For ReconNet, learning the mea-
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surement matrix improves results significantly. Using adversarial loss in addition to

Euclidean loss yields sharper results as in the case of simulated CS data. Also, the

degradation in reconstruction quality when measurement rate is reduced is less in the

case of ReconNet than the iterative algorithms.

2.9 Reducing Memory Footprint With Circulant Layers

A drawback of the architecture presented in Section 2.3.1 is the large size of the

first fully connected (FC) layer that maps the CS measurements to a 2D array. As a

numerical example, consider ReconNet operating at an MR = 0.1 with a block size of

33 × 33. Then, the FC layer contains 109 ∗ 1089 = 118701 weights. By comparison,

the rest of the layers are all convolutional and contain a total of 22720 parameters.

In this section, we discuss ways to reduce the complexity of this layer, which would

be useful in systems with storage constraints, such as mobile platforms.

In inference applications using deep learning such as image recognition, CNN ar-

chitectures usually employ one or two fully connected layers at the end to map the

convolutional feature maps to probability distributions over the class labels. Depend-

ing on the size of the feature maps, the number of classes etc., these FC layers tend

to be large (relative to the rest of the network). Recent research has shown that

we can reduce the complexity of these layers from O(d2) to O(d) without any loss

in performance. One particular paper is that of Cheng et al [31] which replaces the

fully connected layer – represented by a weight matrix without any constraints on the

weights – with a circulant layer where the weight matrix is constrained to be circulant

matrix. They proceed to show that in spite of a large reduction in the number of

parameters, the performance of the network largely remains the same and in some

cases, even performs better! They also discuss how to efficiently compute the output
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of such a layer using FFTs. In this chapter, we propose this layer as an alternative

for the first fully connected layer.

A circulant matrix C ∈ Rd×d is completely defined by a vector c = (c0, c1, ..., cd−1)

as follows:

C = circ(c) =



c0 cd−1 . . . c2 c1

c1 c0 . . . c3 c2

...
...

. . .
...

...

cd−1 cd−2 . . . c1 c0


. (2.8)

It can be shown that for an input x ∈ Rd, the output y ∈ Rd of a circulant layer

can be computed efficiently using

y = Cx = c ~ x = F−1(F(c) ◦ F(x)), (2.9)

where ~ represents circular convolution and ◦ is the element-wise multiplication op-

erator. F and F−1 represent Fourier and inverse Fourier transforms respectively.

We have implemented this layer in TensorFlow which computes the gradients using

automatic differentiation.

In our case, the input vector x ∈ RM has a dimension less than that of the output

of the first layer which is a vector with dimension equal to the number of pixels (N)

in the block. Thus, in order to use the circulant layer instead of an FC layer, we will

append N −M zeros to each input x and hence, C ∈ RN×N and c ∈ RN. Therefore,

the number of weights in the first layer of ReconNet can be reduced from MN to N by

employing a circulant layer instead of an FC layer. For MR = 0.10, this corresponds

to a 99.1% reduction in parameters for the first layer.

However, for higher measurement rates, this leads to significant under-fitting since

the number of trainable parameters becomes small. We observed empirically that we

can increase the reconstruction quality by using multiple circulant layers as the first
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layer instead of just one. At the output of the first layer, we have multiple feature

maps from the circulant layers which are combined into a single tensor. Thus, the

convolutional layer that follows this layer must be modified. If the number of circulant

layers is γ, then each filter in the following convolutional layer are of size 11× 11× γ.

This is only a modest increase in parameters for this layer compared to the 11×11×1

filters which we would need in the case of an FC layer or a single circulant layer.

We evaluate this by training networks at four measurement rates using ReconNet

(Euc) as the network architecture. We increased the number of circulant layers from

1 to a value γ such that the reduction in the parameters of the first layer is no less

than 95% when compared to using a fully connected layer at the same measurement

rate. The training and testing sets are same as in the previous sections. Table 2.6

shows the mean PSNR obtained for the test set using ReconNet using circulant layer

instead of an FC layer. We observe that the reduction in PSNR is within 2 dB at most

measurement rates even with 95% reduction in parameters of the first layer. Although

this may be a significant decrease in performance in terms of PSNR, perceptually, the

quality is remains competitive, as shown in Figure 2.11. The main difference is that

the reconstructions with circulant layers have more artifacts near the edges of blocks.

The reconstructions can be further improved by adding more circulant layer as shown

in Table 2.6. Thus, the number of circulant layers serves as an interesting parameter

with which we can choose the point of trade-off between memory requirements and

reconstruction performance. In Section 2.10, we further show that circulant layers

can be used for memory-efficient CS object-tracking.

2.10 Real-time High Level Vision Using Compressive Imagers

It is now clear that our CS reconstruction algorithm is non-iterative, real-time

and capable of producing good quality reconstruction results, over a broad range
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of measurement rates. In this section, we demonstrate that despite the expected

degradation in PSNR as the measurement rate is decreased to an extremely low value

of 0.01 (10 measurements for a 33×33 block), our algorithm still yields reconstructions

where rich semantic content is still retained. As stated earlier, in many resource-

constrained inference applications the goal is to acquire the least amount of data

required to perform effective high-level image understanding.

To demonstrate how CS imaging can applied in such scenarios, we present an

example proof of concept real-time high level vision application - object tracking. To

this end, we simulate frame-wise video compressive imaging at measurement rates

of 0.01 and 0.10 by obtaining block CS measurements of each frame on 15 publicly

available videos [168] (BlurBody, BlurCar1, BlurCar2, BlurCar4, BlurFace, BlurOwl,

Car2, CarDark, Dancer, Dancer2, Dudek, FaceOcc1, FaceOcc2, FleetFace, Girl2)

used to benchmark tracking algorithms. Then, we perform object tracking on-the-fly

as we recover the frames of the video using all the variants of ReconNet without the

denoiser. For object tracking we use a state of the art algorithm based on kernelized

correlation filters [66]. We call this pipeline, ReconNet+KCF. For comparison, we

conduct tracking on original videos as well. We use the default values of the tracking

algorithm in all cases. Figure 2.12 shows the average precision curve over the 15

videos, in which each datapoint indicates the mean percentage of frames that are

tracked correctly for a given location error threshold. Using a location error threshold

of 20 pixels, the average precision over 15 videos for variants of ReconNet+KCF at MR

= 0.01 is between 68.14% and 77.46%. At MR = 0.10, we obtain impressive tracking

performance between 79.49% and 84.89 % for different variants. By comparison,

tracking on the original videos yields an average precision value of 84.9%. Learning

the measurement matrix gives a significant boost of about 8 and 5 percentage points

at MR = 0.01 and 0.10 respectively.
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The effect of loss function is more nuanced. Euclidean + Adversarial loss seems

to decrease tracking performance at MR = 0.10 with any measurement matrix and

at MR = 0.01 with a Gaussian measurement matrix by about 3 percentage points

over a large range of location error thresholds when compared to just Euclidean

loss. However, we observe the opposite in the case of MR = 0.01 using a learned

measurement matrix. Here, Euclidean + Adversarial loss outperforms Euclidean loss

by about 3 percentage points. ReconNet + KCF operates at around 10 Frames per

Second (FPS) for a video with frame size of 480 × 720 to as high as 56 FPS for a

frame size of 240× 320.

We also conducted tracking experiments using circulant layers (Section 2.9) in-

stead of the first FC layer in the network for the case of Gaussian Φ and Euclidean

loss. At both MR = 0.01 and 0.10, the circulant layers provide nearly the same track-

ing performance as their FC variants, especially at lower location error thresholds.

This clearly demonstrates the effectiveness of circulant layers for high-level inference.

2.11 Conclusion

In this chapter we have described ReconNet – a non-iterative algorithm for CS

image reconstruction based on CNNs. The advantages of this algorithm are two-

fold – it can be easily implemented while making it 3 orders of magnitude faster

than traditional iterative algorithms essentially making reconstruction real-time and

it provides excellent reconstruction quality retaining rich semantic information over a

large range of measurement rates. We have also discussed novel ways to improve the

basic version of our algorithm. We have proposed learning the measurement matrix

jointly with the reconstruction network as well as training with adversarial loss based

on recently popular GANs. In both cases, we have shown significant improvements

in reconstruction quality over a range of measurement rates. Using the ReconNet +
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KCF pipeline, efficient real-time tracking is possible using CS measurements even at

a very low measurement rate of 0.01. This also means that other high-level inference

applications such as image recognition can be performed using a similar framework

i.e., ReconNet + Recognition from CS measurements. We hope that this work will

generate more interest in building practical real-world devices and applications for

compressive imaging.
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Image

Name
Algorithm

MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D

Monarch

TVAL3 [103] 27.77 27.77 21.16 21.16 16.73 16.73 11.09 11.11

NLR-CS [41] 25.91 26.06 14.59 14.67 11.62 11.97 6.38 6.71

D-AMP [121] 26.39 26.55 19.00 19.00 14.57 14.57 6.20 6.20

SDA [126] 23.54 23.32 20.95 21.04 18.09 18.19 15.31 15.38

ΦT Φx +

2 ReconNet Units
22.36 22.86 20.66 21.15 17.75 17.96 15.31 15.41

ReconNet (Euc) [96] 24.31 25.06 21.10 21.51 18.19 18.32 15.39 15.49

ReconNet

(Euc + Adv)
25.83 25.16 21.74 21.94 17.81 18.05 13.99 14.14

Cameraman

TVAL3 25.69 25.70 21.91 21.92 18.30 18.33 11.97 12.00

NLR-CS 24.88 24.96 14.18 14.22 11.04 11.43 5.98 6.31

D-AMP 24.41 24.54 20.35 20.35 15.11 15.11 5.64 5.64

SDA 22.77 22.64 21.15 21.30 19.32 19.55 17.06 17.19

ΦT Φx +

2 ReconNet Units
21.89 22.27 20.71 21.15 18.71 19.08 16.92 17.05

ReconNet (Euc) [96] 23.15 23.59 21.28 21.66 19.26 19.72 17.11 17.49

ReconNet

(Euc + Adv)
25.11 25.20 21.94 22.18 19.58 19.95 17.09 17.37

Peppers

TVAL3 29.62 29.65 22.64 22.65 18.21 18.22 11.35 11.36

NLR-CS 28.89 29.25 14.93 14.99 11.39 11.80 5.77 6.10

D-AMP 29.84 28.58 21.39 21.37 16.13 16.46 5.79 5.85

SDA 24.30 24.22 22.09 22.34 19.63 19.89 16.93 17.02

ΦT Φx +

2 ReconNet Units
23.08 23.41 21.72 22.10 19.02 19.44 16.74 16.90

ReconNet (Euc) [96] 24.77 25.16 22.15 22.67 19.56 20.00 16.82 16.96

ReconNet

(Euc + Adv)
27.90 27.90 23.68 24.09 19.84 20.29 16.93 17.16

Mean

PSNR

TVAL3 27.84 27.87 22.84 22.86 18.39 18.40 11.31 11.34

NLR-CS 28.05 28.19 14.19 14.22 10.58 10.98 5.30 5.62

D-AMP 28.17 27.67 21.14 21.09 15.49 15.67 5.19 5.23

SDA 24.72 24.55 22.43 22.68 19.96 20.21 17.29 17.40

ΦT Φx +

2 ReconNet Units
23.73 24.32 22.28 22.86 19.55 19.96 17.24 17.38

ReconNet (Euc) [96] 25.54 25.92 22.68 23.23 19.99 20.44 17.27 17.55

ReconNet

(Euc + Adv)
27.11 26.90 23.22 23.48 19.65 20.00 16.66 16.90

Table 2.1: PSNR values in dB for three test images as well as the mean PSNR values

for the entire test set using different algorithms at different MRs with a Gaussian Φ. At

low measurement rates of 0.1, 0.04 and 0.01, both variants of our algorithm yields superior

quality reconstructions than the traditional iterative reconstruction algorithms. It is evident

that the reconstructions are very stable for our algorithm.
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Algorithm MR=0.25 MR=0.10 MR=0.04 MR=0.01

TVAL3 (CPU) 2.943 3.223 3.467 7.790

NLR-CS (CPU) 314.852 305.703 300.666 314.176

D-AMP (CPU) 27.764 31.849 34.207 54.643

ReconNet (CPU) 0.5249 0.5258 0.5284 0.5193

ReconNet (GPU) 0.0213 0.0195 0.0192 0.0244

SDA (GPU) 0.0042 0.0029 0.0025 0.0045

Table 2.2: Time complexity (in seconds) of various algorithms (without BM3D) for

reconstructing a single 256×256 image on both CPU (Xeon E5-1650) and GPU (GTX

980) Taking only about 0.02 seconds at any given MR, ReconNet can recover images

from CS measurements in real-time.

MR
No. of D-AMP units

ReconNet
1 5 10

0.25 0.5582 0.7865 1.1584 0.0119

0.10 0.2803 0.4518 0.7290 0.0124

0.04 0.1762 0.3011 0.5357 0.0119

0.01 0.0930 0.0882 0.4521 0.0120

Table 2.3: Time in seconds to reconstruct a 256 × 256 image on a Titan X GPU.

Clearly ReconNet is much faster than LDAMP at all MRs. Note that BM3D is not

used for ReconNet.
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New Φ MR 0.1 0.08 0.04 0.01

Base network MR 0.25 0.1 0.1 0.25

Mean PSNR (dB) 21.73 20.99 19.66 16.60

Training Time (seconds) 2 2 2 2

Table 2.4: Networks for a new Φ can be obtained by training only the FC layer of

the base network at minimal computational overhead, while maintaining comparable

PSNRs.

Loss function and

measurement matrix type

MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D

Euclidean

with Gaussian Φ [96]
25.54 25.92 22.68 23.23 19.99 20.44 17.27 17.55

Euclidean + adversarial

with Gaussian Φ
27.11 26.90 23.22 23.48 19.65 20.00 16.66 16.90

Euclidean

with learned Φ
26.59 26.44 25.51 25.73 23.14 23.51 19.44 19.74

Euclidean + adversarial

with learned Φ
30.53 29.42 26.47 25.94 22.98 23.00 19.06 19.31

Table 2.5: This table shows the mean reconstruction PSNR on the test set for different

variations of ReconNet i.e., with different loss functions and measurement matrices

(Φ). We see that the PSNR improves significantly at all measurement rates when a

the measurement matrix is changed from a Gaussian matrix to a jointly learned one

(Section 2.7). We also observe that at higher measurement rates of 0.25 and 0.10,

using adding adversarial loss to Euclidean loss (2.7) while training improves PSNR

by about 1 dB in the case of a Gaussian Φ and about 3 dB when Φ is learned.
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D-AMP TVAL3 Φ
T
Φx

+ 2 ReconNet Units

ReconNet - Euc Loss

with Gaussian MM

ReconNet - Euc + Adv

Loss with Gaussian MM

ReconNet - Euc Loss

with learned MM

ReconNet - Euc + Adv

Loss with learned MM

(a) MR = 0.10

D-AMP TVAL3 Φ
T
Φx

+ 2 ReconNet Units

ReconNet - Euc Loss

with Gaussian MM

ReconNet - Euc + Adv

Loss with Gaussian MM

ReconNet - Euc Loss

with learned MM

ReconNet - Euc + Adv

Loss with learned MM

(b) MR = 0.04

Figure 2.10: The figure shows reconstruction results for 2 images whose measure-

ments are collected using our block SPC. The results are for two measurement rates

(a) 0.10 and (b) 0.04. The iterative methods in first and second columns use a Gaus-

sian Φ. The next four columns shows the reconstructions obtained using different

variants of ReconNet based on the loss function used in training and whether or not

Φ was learned. “MM” and Φ both stand for measurement matrix, “Euc Loss” stands

for Euclidean loss and “Adv Loss” stands for adversarial loss. Clearly, all variants

of ReconNet with a Gaussian Φ (columns 3,4,5) perform better than both TVAL3

and D-AMP. Both learning the measurement matrix and using adversarial loss make

reconstructions sharper and less noisy.
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Figure 2.11: The figures show reconstruction results for the “Boats” and “Foreman”

image for circulant layers compared to fully connected layer. The images demonstrate

that circulant layers produce good quality images and at the same time, provide huge

savings in terms of storage.
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Figure 2.12: The figure shows the variation of average precision with location error

threshold for ReconNet+KCF and original videos. Clearly, semantic content required

for object tracking is retained even in reconstructions at MR = 0.01
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MR
No. of

Circulant Layers

% Reduction in Parameters

in the First Layer

Mean PSNR using circulant layers Mean PSNR using an FC layer

without BM3D with BM3D without BM3D with BM3D

0.25
1 99.63 20.92 21.31

25.54 25.92
13 95.22 23.52 23.89

0.10

1 99.08 20.3 20.71

22.68 23.235 95.41 21.24 21.65

15 86.24 22.07 22.57

0.04

1 97.67 18.83 19.18

19.99 20.442 95.34 19.11 19.48

5 88.37 19.29 19.69

0.01 1 90 16.51 16.77 17.27 17.55

Table 2.6: Comparison of mean PSNR (in dB) of reconstruction of the test set using

a one or more circulant layers instead of a fully connected layer as the first layer of

ReconNet. We see that the reduction in PSNR using circulant layers is within 2 dB

even with 95% reduction in parameters in the first layer. (The entries in the last two

columns are from Table 2.1)
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Chapter 3

IMPOSING DESIGN CONSTRAINTS ON LEARNED MEASUREMENT

OPERATORS FOR RECONNET

3.1 Introduction

Advances in computational imaging have led to cameras tailored to application

domains. Indeed, different constraints arise depending on the task at hand which

necessitate design and exploration of novel camera architectures. For example, mobile

devices have energy constraints, imaging in short-wave infrared (SWIR) domain in

high resolution is very expensive with conventional sensors, and magnetic resonance

imaging is very slow when sampled at the Nyquist rate. We can overcome these

issues using spatial multiplexing cameras, where, instead of recording pixel intensities,

projections of the scene onto a chosen basis subset are computed by the camera.

As mentioned in Chapter 2, learning-based methods using neural networks have

recently made significant progress in producing excellent image reconstruction in real-

time. These methods are non-iterative in nature and require a simple feed-forward

operation through the trained network. These networks are trained using Gaussian

measurements as in [126, 96], and further improved by jointly learning the measure-

ment operator as in [126, 107, 4].

If high-level inference is the eventual goal of image acquisition, then it can be per-

formed directly in the compressed domain, bypassing expensive image reconstruction.

Theoretical and experimental evidence for this idea has been provided by Calderbank

et al. [22] and Davenport et al. [116] for linear classifiers. Deep learning can make

the process of direct inference on compressive measurements much more effective as
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shown by Lohit et al. [108] for Gaussian measurements, and improved by learning

the measurement matrix jointly with the image recognition network as shown by

Adler et al. [6]. Below, we mention two interesting design constraints on the learned

measurement operator that we believe can lead to more efficient compressive imaging

systems.

In all the deep learning based works mentioned above,

(1) the measurement rate is a user-defined quantity and at the time of training, it

may not be clear what it should be. In this chapter we propose a modified optimization

problem which encodes the trade-off between the number of measurements and the

network performance. This trade-off is expressed in terms of a parameter λ that may

represent the cost per measurement in terms of sensing time, bandwidth, energy etc.

We provide a solution to the problem of finding the optimal number of measurements

by minimizing the rank of the measurement operator Φ. To this end, we propose

two different regularizers on the values of Φ – the nuclear norm and the l2,1 norm.

These regularizers can be readily integrated into the backpropagation framework. We

demonstrate the effectiveness of the proposed framework for two different applications

– image reconstruction and object recognition.

(2) for a given trained network, the MR is defined prior to training, and thus,

cannot be used at different MRs at test time. In this chapter, we extend the

ideas of deep learning based data-driven CS reconstruction and inference

to applications where it is necessary and useful to allow for the MR to

vary at test time, keeping the network fixed. We call such a system –

Rate-Independent CS, and it refers to the combination of the measurement op-

erator, usually implemented using a single pixel camera (SPC) [116], and the re-

construction/inference network that follows it. To this end, we propose learning

“super-operators” which satisfy what we called subset-validity constraints. This is
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MR = 0.25 MR = 0.10 MR = 0.04

Ours

Vanilla

Figure 3.1: Sample visualizations comparing our algorithm Rate-Independent CS

which is stable over a range measurement rates [0.04 − 0.25], with vanilla training

algorithm that is trained for a single MR=0.25 (272 measurements) and tested over

the chosen MR range. Clearly, our algorithm produces better quality images over the

entire range of MRs.

illustrated in Figure 3.6. As applications of Rate-Independent CS, we envision power

and storage-constrained mobile systems, where MR is a function of available energy,

memory, or time-varying bandwidth constraints or even content-based dynamically

varying MR. This also means that only a single network needs to be stored in the

system and no access to training data is necessary. Hence, our approach is memory

efficient, compared to earlier purely data-driven deep-learning-for-CS methods. For

the task of image reconstruction, compared to earlier approaches like [107], we get

huge improvements in PSNR of up to 15 dB, for the case wherein a network trained

at a MR = 0.25 is used to reconstruct measurements acquired at MR = 0.04. Some

examples are shown in Figure 3.1.
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3.2 Related Work

Image reconstruction: An important problem in CS is to recover the original

signal x ∈ Rn from the compressive measurements y ∈ Rm. The earlier CS methods

posed this problem as a constrained optimization problem using prior models on the

set of natural images as the constraint set, such as sparsity in a transform domain

[128, 21, 103] and more complicated models such as in [12, 41, 122]. These algorithms

are iterative in nature, computationally expensive and do not perform well at low

measurement rates (< 0.1) [96]. Over the past few years, instead of hand-crafted

priors, deep learning-based approaches have been shown to be superior to traditional

methods. Deep learning methods can further be divided into two categories: (1) deep

nets are used as a step of unrolled iterative algorithms [58, 82, 15, 123, 28, 178], (2)

purely data-driven i.e., deep nets map the y directly to x [126, 97, 173]. We focus

on the latter approach in this chapter as it is currently not clear how the unrolled

methods can be used to learn the measurement matrix jointly. Mousavi et al.[126]

proposed the first non-iterative deep learning networks for CS reconstruction. This

model is based on stacked denoising auto-encoders. Kulkarni et al. [97] propose a

CNN based model called ReconNet. Lohit et al.[109] extend ReconNet where the

measurement matrix is jointly learned with the reconstruction network. Similar ideas

have also been applied for video compressive sensing [76, 75].

Image recognition: Calderbank et al. [22] have shown theoretically that it is

possible to do the inference task like object recognition directly from CS measurement

without reconstructing the image. Davenport et al. [116] use the CS version of match

filtering called as ’smashed filter’ for image recognition. Lohit et al. [108] propose

deep learning for object classification in the compressed domain. This model uses a
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Figure 3.2: The figure shows the general framework for jointly learning the measure-

ment matrix and the reconstruction network. The measurement matrix is denoted

by Φ ∈ Rm×n and forms the first fully connected (FC) layer in the network. The

output of this layer are the compressive measurements of the scene. The second layer

Ψ ∈ Rn×m maps the compressive measurements back into the 2D space.

fully-connected layer to project the CS measurement to pixel space and the rest of

model is a typical CNN based classification network, further improved by Adler et al.

[4] by jointly learning the measurement matrix.

3.2.1 Contributions

1. We propose addition of rank regularizers to compressive reconstruction and com-

pressive inference network that can take into account the cost of sensing and model

the trade-off between reconstruction performance and number of measurements.

2. We propose a novel optimization problem in the context of compressive imaging

to learn a single measurement operator and reconstruction/inference algorithm

jointly. This is done such that the MR is reduced by simply using a smaller subsets

of the rows of the measurement matrix (satisfying subset-validity constraints),

and the reconstruction/inference algorithm remains fixed. Based on insights from

existing methods, we design a three-stage training algorithm to solve this problem.

3. Using widely-employed network architectures for purely data-driven CS reconstruc-

tion, we demonstrate experimentally that reconstruction networks trained with the
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proposed algorithms allow for learning reduced-rank and rate-independent mea-

surement operators that yield excellent reconstruction performance.

4. As a proof of concept, we describe object tracking where MR is varied dynamically

depending on image content or a pre-determined adaptation scheme. We use a

single network to reconstruct the frames at different MRs and show that the object

tracking performance remains competitive.

5. Finally, we show that the algorithms are general enough that they allow for learning

reduced-rank and rate-independent inference networks for tasks like image recog-

nition rather than reconstruction. Experiments on MNIST and CIFAR-10 show

the wide applicability of our algorithm.

3.3 Learning a Low-Rank Φ: LowRankCS

We will first describe the framework for learning task-specific measurement op-

erators. We note that while the reconstruction/inference network architecture will

depend on the task and other design choices, the general framework remains the

same as shown in Figure 3.6. Once the network is trained, the first FC layer, denoted

by Φ, acts as the measurement operator that is implemented in the compressive im-

ager, whose outputs are the compressive measurements. The second FC layer, Ψ,

maps the compressive measurements into the original dimension n and is reshaped

into a 2D array to be compatible with the reconstruction/inference network archi-

tecture. The remaining parameters in the network are denoted by Θ. That is, the

training problem can be described as

min
Φ,Ψ,Θ

1

N

N∑
i=1

L(xi,di), (P1)
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where di is the desired output. For image reconstruction di = xi and L(.) may

be chosen as the Euclidean loss. In the case of the image recognition, di = pi, where

pi is a one-hot vector with the position of the one indicating the ground-truth label

and the L(.) is the cross-entropy loss.

The main advantage of CS is that one can achieve a high performance even with

a small number of measurements. We want to have as few measurements as possible

while maintaining a high level of performance. However, in the set-up described in

the above paragraph, the number of measurements is a user-defined quantity, deter-

mined by the number of rows in Φ, m and may not be known a priori. Instead, in this

chapter, we formulate the following alternative optimization problem which can ex-

press the trade-off between the number of measurements and the performance of the

reconstruction/inference algorithm. We refer to this framework as LowRankCS. We

assume that there is a cost per measurement that is given by λ and that the number

of measurements cannot exceed m. We can write the optimization problem as

min
Φ,Ψ,Θ

1

N

N∑
i=1

L(xi,di) + λ rank(Φ). (P2)

The constraint on the maximum number of measurements is satisfied by setting

the first fully connected layer (which implements the measurement operator Φ) to be

of size m × n. In the initial framework without rank minimization, the rows of Φ,

with m rows, are implemented by the camera. Our goal is not just to reduce the rank

of Φ, but the number of measurements that need to be acquired. Thus, we cannot

directly use the Φ from Problem P2. We use the singular value decomposition (SVD)

of Φ instead: Φ = UΣV T . Say, the rank of Φ returned by Problem P2 is some k < m.

Then, we use the top k columns of U , top k singular values of Σ and top k rows of V T ,

denoted by Uk,Σk and V T
k respectively, to obtain Φ = Φk = UkΣkV

T
k . Now, instead

of the rows of Φ being implemented by the camera, the k rows of V T
k are implemented

54



by the camera. Thus, the new signal acquisition process is given by z = V T
k x and

then y is computed using y = Φx = Φkx = UkΣkz.

The rank, being a discrete quantity cannot be directly minimized using gradient-

based optimization and rank minimization is known to be NP-hard [138]. Therefore,

P2 cannot be optimized directly and we turn to regularizers on the values of Φ that

may help us at least solve an approximate version of P2. Then, P2 is transformed to

min
Φ,Ψ,Θ

1

N

N∑
i=1

L(xi,di) + λReg(Φ). (P3)

Next, we describe two different regularization functions used and their sub-gradients,

used for backpropagation.

Nuclear norm [49] : There are several works in the literature that employ the

nuclear norm for rank minimization problems and have some recovery guarantees

in certain settings e.g. rank minimization with linear equality constraints [138] and

matrix completion problems [20, 23]. A related paper by Hegde et al. [64] pro-

poses nuclear norm minimization for dimensionality reduction and metric learning,

and can be used to design task-specific measurement matrices. However, the recon-

struction/inference algorithm is designed independently unlike the end-to-end frame-

work presented here. Nuclear norm regularization has also been applied in the deep

learning setting for multi-task learning [172]. We employ the nuclear norm as a

regularization function in P3. The nuclear norm of Φ, denoted ||Φ||∗, is given by

||Φ||∗ =
∑m

i=1 σi = trace(
√

ΦTΦ). We still need to provide the gradient function

for the backpropagation algorithm. However, the nuclear norm is not differentiable

everywhere. As it is a convex function, we can employ a sub-gradient such as the

following [165]: ∂||Φ||∗ = UV T .
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`2,1 norm : The `2,1 regularizer has been used in applications to promote structured

sparsity such as multi-task feature selection [131, 105, 129]. For our case, the `2,1

regularizer is given by ||Φ||2,1 =
∑m

i=1

√∑n
j=1 Φ2

ij. This regularizer encourages rows

of Φ to be zero. Clearly, all zero rows of Φ can be removed, thus reducing the rank

of the measurement operator. This function is not differentiable when the row of the

matrix is zero. Hence, we use its sub-gradient with respect to the (i, j)th element of

Φ, given by (∂||Φ||2,1)ij =
Φij

||Φ.,j ||2 , if Φ.,j 6= 0 and 0 otherwise.

3.3.1 Experimental Results on LowRankCS

In this section, we describe the experimental results for the LowRankCS frame-

work, where we learn the optimal number of measurements through rank minimiza-

tion. For each of the proposed regularizers, we train networks for varying values of

λ and conduct the experiments at two different measurement rates MR = 0.25 and

0.10 and use the test set to demonstrate that the Φ thus obtained is indeed low-rank

and that its rank depends on the value of λ and the regularizer. Once the training is

complete, we determine the approximate rank of the learned measurement matrix as

follows. We compute the performance of the algorithm on the test set for increasingly

low rank approximations of Φ, using SVD, given by {Φk = UkΣkV
T
k , k = 1, 2, . . . ,m},

with Φm = Φ. Rank of Φ is then determined to be the value of k for which the

performance on the test set suddenly drops.

Experiments on image reconstruction

Here, we describe the n/w, the training and testing protocols used for the image

reconstruction problem: given y, return x, where y = Φx. It is important to note

that Φ is also learned (see Figure 3.6). The n/w architecture we employ in this

chapter is the extended ReconNet architecture described in [107] for jointly learning
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Ground Truth

Rank = 272

PSNR = 25.9732dB

λ = 0

Rank = 117

PSNR = 12.2622dB

λ = 0

Rank = 65

PSNR = 9.4005dB

λ = 0

Rank = 117

PSNR = 25.6803dB

λ = 0.001

Rank = 65

PSNR = 23.3813dB

λ = 0.1

Ground Truth

Rank = 272

PSNR = 22.3696dB

λ = 0

Rank = 117

PSNR = 11.731dB

λ = 0

Rank = 65

PSNR = 9.1246dB

λ = 0

Rank = 117

PSNR = 22.3054dB

λ = 0.001

Rank = 65

PSNR = 21.4491dB

λ = 0.1

Figure 3.3: The figures show reconstructions for two test images using no regulariza-

tion (λ = 0) and with nuclear norm regularizer with different values of λ. Note that,

without regularization, low-rank approximation of Φ results in poor performance.
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Figure 3.4: The plots show LowRankCS results for image reconstruction application.

The top row shows the mean test PSNR for different low-rank approximations of Φk’s.

The bottom row shows the singular values of the various Φ’s obtained. We see that

the rank of Φ is lower with regularization and with higher value of λ. Best viewed in

color.
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λ
MR = 0.25 (m=272) MR = 0.10 (m=109)

Rank PSNR Rank PSNR

0 272 25.50 109 24.82

10−3 117 25.33 103 25.01

10−2 69 23.61 97 24.63

10−1 65 23.00 19 19.64

Table 3.1: Results for LowRankCS for the image reconstruction problem showing that

we can design low rank measurement operators using the nuclear norm regularizer.

Rank denotes the rank of the learned Φ and PSNR denotes the mean reconstruction

PSNR (dB) over the test set. Note that the sensing and reconstruction are performed

block-wise with a block size of 33× 33, n = 1089.

the measurement operator and the reconstruction algorithm, a series of convolutional

layers. Note that the n/w is for block-wise reconstruction which means that the

sensing and reconstruction process is for non-overlapping blocks of the image, not

the entire image. The first layer is an FC layer of size m × n which serves as the

measurement operator Φ. The second layer, Ψ, is also an FC layer of size n×m which

converts the output of the first layer into the same dimension as the original signal

and is then reshaped to form a 2D array of the same dimensions as the image. This is

then followed by two ReconNet units described in [96], consisting of six convolutional

layers with ReLU activation. The loss function consists of two terms as shown in

P3. The first term for this case is simply the Euclidean loss between the desired

output x (the original image itself) and the estimated reconstruction x̂. We perform

experiments with both regularizers described in Section 3.3 with different values of

λ = 0, 10−1, 10−2, 10−3.
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We train all networks for 5 × 105 iterations with the Adam optimizer [92] with

an initial learning rate of 10−4. The training set and testing are identical to the ones

used in [96]. The training set consists of 91 grayscale natural images. About 24000

image blocks of size 33× 33 are constructed from these images and serve as both the

inputs as well as the desired output for the network. Thus n = 1089(33×33). For the

test set, set of 11 standard test images – Barbara, Boats, Cameraman, Fingerprint,

Flintstones, House, Lena, Foreman, Monarch, Parrots and Peppers – is employed.

The results are shown in Figure 3.4 and Table 3.1. Compared to the case with

λ = 0, PSNR curves remain flat for a large range before falling. This indicates that

the learned Φ is indeed approximately low-rank. This can also be inferred from the

plots of the singular values (in log scale) which show significant decay compared to

the case without any regularization. These remarks are true for both the nuclear

norm and `2,1-norm regularizers. Both regularizers yield similar results in terms of

test PSNR. Note that the PSNRs obtained with regularization for m equal to the

ranks determined by the algorithm are approximately equal to the PSNRs obtained

without regularization for the same values of m. But our algorithm can determine

the optimal rank automatically, given the cost λ. If we do not know the desired value

of λ, but only the desired PSNR, we can envision a alternating optimization strategy

for updating the value of λ until the desired PSNR is achieved. Interestingly, we see

that for small values of λ = 10−3, even though the rank(Φ) ≈ m, the mean PSNR

values on the test set are higher indicating that they are also effective at reducing

overfitting. Figure 3.3 shows the reconstructions for two test images demonstrating

that nuclear norm regularization is effective for designing low rank Φ.
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Figure 3.5: The plots show LowRankCS results for the image recognition problem

on the MNIST database. The top row shows the test accuracy for different low-rank

approximations of Φ as the measurement matrix. Bottom row shows the singular

values of the various Φk’s obtained. We clearly see that the rank of Φ is lower with

regularization and with higher value of the cost parameter, λ. Best viewed in color.

Experiments on image recognition

Here, we learn low-rank measurement operators for MNIST digit recognition to il-

lustrate that LowRankCS is also applicable to inference algorithms. The network is

a modified version of the LeNet-5 architecture [101] with 3 convolutional layers, two

FC layers and a softmax layer. We add two FC layers at the input of the network,

of which the first serves as Φ and the second FC layer is the matrix Ψ. All networks

are trained for 5× 104 iterations using the Adam optimizer [92] with an initial learn-

ing rate of 10−4. The dataset consists of 50000 training and 10000 testing grayscale

images of hand-written digits of size 28× 28. Thus n = 784(28× 28).

The results are shown in Figure 3.5. As desired, both regularizers return Φ of

low rank and the rank decreases with an increase in λ, while maintaining high per-
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Φ Ψ

Θ
Add rows to 
increase MR

MR = 0.04

MR = 0.10

MR = 0.25

Once learned, the measurement 
matrix is implemented by the 

spatial multiplexer

The reconstruction 
network is the same at 
all measurement rates

Scene

Add rows to 
increase MR

Trainable Parameters

Rate-Independent Vanilla

ReconNet,
Autoencoder etc.

Figure 3.6: The figure shows Rate-Independent CS for image reconstruction. The

measurement matrix, Φ ∈ Rm×n forms the first fully-connected layer in the network.

After training, Φ is implemented in the SPC, and the output of this layer are the

compressive measurements of the scene. The second layer Ψ ∈ Rn×m maps the

compressive measurements back into the 2D space. The rest of the reconstruction

network (ReconNet, autoencoder, DR2-Net [173] etc.) is represented by Θ. For image

recognition, we use an inference network instead.

formance. Note that the accuracies obtained with regularization for m equal to the

ranks determined by the algorithm are approximately equal to the accuracies obtained

without regularization for the same values of m. But our algorithm can determine the

rank automatically, given the cost λ. We can also see that the singular values decay

much faster than in the case with λ = 0 (no regularization). For small values of λ,

regularization leads to better performance in many cases, which is an added bonus.

3.3.2 Super-operators and Rate-Independent CS

This section describes the main contribution of the chapter. As mentioned earlier,

it is of practical value if we can train the combination of the measurement matrix Φ

and a single reconstruction/inference network such that the system can operate at

when some rows of Φ are dropped, without having to modify rest of the network. To
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this end, we propose a new training algorithm that makes the system performance

stable with respect to a chosen range of measurement rates (MR). By this we mean

the following: For a given range of MRs, we want the performance of the algorithm to

be highest at the upper limit of the range and decrease slowly as the MR is decreased,

such that the performance at any particular MR in the range is approximately equal

to that of a system that is trained for a single MR. For convenience, we call such a

system Rate-Independent CS, as the system is required to work at all rates. This

is an interesting design constraint that has not been considered in the literature of

either compressive sensing or deep learning.

We write the problem under consideration formally as follows by defining what

we call subset-validity constraints. Denoting the measurement operator, the back

projection operator and the reconstruction/inference function by Φ,Ψ and f(Θ, ·),

we want to solve the joint optimization problem

minΦr,Ψr,Θ
1

2
||x− f(Θ,ΨrΦrx)||22 (3.1)

s.t. Φr+1 = [Φr,Φ(r + 1, :)]

Ψr+1 = [Ψr,Ψ(:, r + 1)],∀r = k, . . . ,m.

f(Θ, ·) is chosen to be a neural network with a predetermined architecture and

Θ are its learnable parameters. In the case of reconstruction, f(Θ, ·) is itself trained

to approximate another optimization problem which is to solve the underdetermined

linear system

f(Θ,ΨrΦrx) ≈ arg min
x∈C
||y − Φx||, (3.2)

where C is the set of real images. In the case of inference such as image recog-

nition, f(Θ, ·) is trained to perform the required task. That is, we want to design
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a single measurement matrix Φ ∈ Rm×n such that each contiguous subset of the

rows of Φ denoted by Φr = Φ(1 : r, :) is a valid measurement matrix for the same

reconstruction/inference network, f(·). These are the subset-validity constraints and

we refer to a Φ that satisfies these constraints as a super-operator. This overcomes

a major drawback of previous purely data-driven algorithms and makes the system

more efficient as only a single Φ needs to be stored. We will now describe a simple

algorithm, inspired by key insights, to solve the above optimization.

MR =

0.25

MR =

0.10

(a) conv 1 filters (b) conv 3 filters (c) conv 4 filters (d) conv 6 filters

Figure 3.7: Visualizing filters of ReconNet [107] in the frequency domain for MR =

0.25 and 0.10. We clearly see several similarities between the filters at the two MRs.

This means that the filters can be used across MRs.

Motivation for three-stage training process

We will first describe the motivation through which the algorithm can be derived.

We use the extended ReconNet architecture [107], for insight into designing Rate-

Independent CS. We first trained ReconNet at two different MRs = 0.25 and 0.1.

Then, we visualized the filters in the convolutional layers. Although the filters are

not exactly the same, one can immediately observe remarkable similarities in the

filter structures. When observed in the frequency domain, both sets of filters have a

“speckle-field” structure and more interestingly, even more similarities emerge. Figure

3.7 shows some pairs of filters, from every layer, at the two MRs that are very similar

to each other. This may be because of the fact that output generated at the end of
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the second FC layer are image-like and have spatial correlated structure (observed by

107) at both MRs, just differing in quality. Thus, similar convolutional operations

are required to generate the final high-quality output. This leads to our idea that

convolutional filters from one MR can be reused over the MR range of [k,m]. We

later show that this is also true for autoencoders, not just CNNs.

Once the measurements are obtained from the spatial multiplexer (the first lay-

ers, Φ, in the network), the second layer maps it back into a 2D array to obtain

a pseudo-image. In our experiments, the second layer Ψ is constrained to be Φ†,

the pseudoinverse of Φ given by ΦT (ΦΦT )−1. This reduces the total number of pa-

rameters in the network by a large amount, especially for ReconNet-like architecture

with convolutional layers, thus reducing the chance of overfitting. Now, we describe

the three-stage training algorithm required to ensure that the network obeys subset-

validity constraints of Rate-Independent CS. As the convolutional filters are fixed for

the entire range of MRs, the only difference in network architecture are the first (Φ)

and second (Ψ) FC layers. We will denote the parameters in the system, except Φ

and Ψ, by Θ.

Stage 1: In the first stage, we train the convolutional layers (or the later FC layers

in the case of autoencoders), for which we train the entire network at the base mea-

surement rate of MR = m
n

. That is, Φ is set to be of size m × n. This ensures that

the convolutional layers are most suited for the upper limit of the MR range, thus

leading to the highest performance of the network at MR = m
n

, as required. We call

this the base network.

Stage 2: In the second stage, we freeze all the parameters Θ. We set the size of 1st

FC layers to be of k × n (thus, size of 2nd FC layer is n× k), and optimize over only

these parameters. This ensures that the network performs well at the MR = k
n
.
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Stage 3: In the third stage, we add a single row at a time to the 1st FC layer and

optimize over only the newly added variables. All the other variables, the remain-

ing rows of Φ, and Θ, are held constant. Thus, the output of the three-stage

training algorithm is a super-operator Φ such that any subset of its rows

Φ(1 : r, :), k ≤ r ≤ m, is a valid measurement matrix for the reconstruc-

tion/inference network defined by Ψ(:, 1 : r) and Θ. The proposed training

algorithm is summarized in Algorithm 1. The general framework for jointly learning

Φ and the reconstruction/inference network is illustrated in Figure 3.6.

Comparison with a random Gaussian Φ

Earlier works in literature such as 126 and 107 have convincingly demonstrated that

for the same network architecture, learning Φ jointly with the reconstruction al-

gorithm results in substantially improved PSNRs (∼3dB) over random Φ. In our

problem, we have made similar observations: that using a random Φ performs worse

than learning the Φ, especially when one starts dropping rows. We have not included

this in the chapter, as it is now commonly known.

Comparison with unrolled iterative algorithms

There have been several algorithms such as LDAMP [123] and ISTA-Net [178] that

combine learning based methods with earlier iterative approaches. These algorithms

have provided excellent results in the case of a predefined measurement matrix such

as a Gaussian matrix for which the network can be readily used at different mea-

surement rates. However, it is not clear how to employ these networks to learn the

measurement matrix jointly with the reconstruction. Our experiment with ISTA-Net

for this purpose failed: the learning was erratic and did not converge. As such, we

compare the proposed method with purely data-driven networks. It is also worth
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Algorithm 1 Training Algorithm for Rate-Independent CS.

Input: k ←− Min. #rows of Φ, m←− Max. #rows of Φ and other hyperparam-

eters

Output: Φnew, Ψnew = Φ†new and Θ, the remaining parameters in the reconstruc-

tion/inference network

Initialize network with size of 1st FC layer = size(Φ) = m× n

Stage 1

for iter = 1 to max iters 1 do

Optimize over Φ and Θ

end for

Stage 2

Φk ←− Φ(1 : k, :); Ψk = Φ†k Replace Φ with Φk in the network

for iter = 1 to max iters 2 do

Optimize over Φk, holding Θ constant

end for

Stage 3

Φnew ←− Φk; Ψnew = Φ†new

for r = k + 1 to m do

for iter = 1 to iters per row do

Φnew ←− [Φnew; Φ(r, :)]; Ψnew = Φ†new

Optimize over Φ(r, :), holding Φ(1 : r − 1, :) and Θ constant

end for

end for
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noting that, at lower measurement rates for a given performance level, networks like

LDAMP and ISTA-Net are several times slower and bigger than the purely data-

driven counterparts.

3.3.3 Experimental Results

In this section, we describe experimental results for the Rate-Independent CS

framework (Section 3.3.2, Algorithm 1), where we learn Φ and the reconstruction/inference

network that can be operated over a range of MRs. We compare our results with the

“vanilla” framework [107, 5], where the system is trained for a single MR. We

carry out experiments for both image reconstruction as well image recognition. As

mentioned, we need to input the values of the operating MR range [k,m] to the algo-

rithm, which are the minimum and maximum values of MR for which the system can

operate. We demonstrate that our algorithm is effective as follows. Given a trained

network (Φ,Ψ,Θ), we start with Φ(1, :) as the measurement matrix and Ψ(:, 1) as the

second FC layer. We observe the performance of the system on the test set. Then,

we add one row at a time to the measurement matrix, and one column at a time to

the second FC layer and measure the change in performance, compared to the vanilla

algorithm which is trained for a single MR.

Rate-Independent CS for image reconstruction

In this section, we will describe the network, the training and testing protocols used

for the image reconstruction problem: given y, return x, where y = Φx. We reiter-

ate that Φ is also learned (see Figure 3.6), and forms the first layer of the network

while training. We experiment on two network architectures – the extended Re-

conNet architecture [107] which uses 6 convolutional layers, and a 3-layer

autoencoder [126] – for jointly learning the Φ and the reconstruction algorithm.
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Note that the networks are designed for block-wise reconstruction which

means that the sensing and reconstruction process is for non-overlapping

blocks of the image rather than the entire image. The loss function is simply

the Euclidean loss between the desired output x (the original image itself) and the

estimated reconstruction x̂.

Datasets: The training and test sets are identical to those employed by 96. The

training set contains 91 natural images that can be downloaded from this website 1

. The training set for the network is obtained by constructing image blocks of size

33 × 33. The test set consists of 11 standard images employed in image processing

literature obtained from these two links given here 2 3 .

Results: Figure 3.8 shows the results in terms of the mean PSNR obtained on the

test set for different combinations of [k,m]. Figure 3.9 shows the reconstructions for

a subset of test images comparing the vanilla framework with Rate-Independent CS

using ReconNet.

We can clearly observe the desired behavior of Rate-Independent CS. For all cases

tested, the performance only decreases gradually for Rate-Independent CS, as the

number of measurements is decreased, within the operating range. This is not true

in the case of the vanilla algorithm, where the performance falls much more quickly

when the test MR strays from the training MR. It also appears that the performance

at a measurement rate depends on the value of k. For example, a lower k = 0.04n

leads to a lower mean PSNR at MR = 0.10. This can be explained by observing

that Stage 3 of the algorithm builds on the Φ learned in Stages 1 and 2 and is

expected to be sub-optimal compared to the vanilla training algorithm for the specific

1mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN train.zip

2https://web.archive.org/web/20160403234531/http://dsp.rice.edu/software/DAMP-toolbox

3http://see.xidian.edu.cn/faculty/wsdong/NLR Exps.htm
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Figure 3.8: Rate-Independent CS results for image reconstruction for the Rate-

Independent CS framework compared to the vanilla training algorithm trained for

a single measurement rate. We test on two architectures – autoencoder [126] and Re-

conNet [107]. Clearly, Rate-Independent CS is stable over the entire chosen operating

range while the performance of the vanilla framework drops considerably in the same

range.

MR=0.10. Naturally, the performance at MR = m
n

depends on m − k, but only to

a small extent, as required. This can be observed easily from the plots. Using

ReconNet as the underlying architecture, we note that a rate-independent network

for MR = [0.10, 0.25] performs on average 9 db and up to 15.2 dB better than a

vanilla network trained for MR = 0.25, when tested over all MRs. Similar results are

observed for all other cases.

How rate-independence modifies Φ: Here, we compare the Φ learned in the

Rate-Independent framework, with the vanilla algorithm in Figure 3.10. We can

observe that the rows of rate-independent Φ look like a sampling of rows of Φ trained
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# measurements = 272

PSNR = 31.5079dB

# measurements = 109

PSNR = 9.8891dB

# measurements = 43

PSNR = 7.2761dB
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Vanilla training algorithm Rate-Independent CS
Ground Truth

# measurements = 272
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# measurements = 109

PSNR = 22.0225dB
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Vanilla training algorithm Rate-Independent CS

Figure 3.9: The figures show examples of reconstruction for 2 test set images us-

ing the vanilla training algorithm [107] trained for MR = 0.25, compared to Rate-

Independent CS, proposed in this chapter ([k,m] = [0.04n, 0.25n]) We observe that

Rate-Independent CS performs significantly better than the vanilla approach over a

range of MRs. ReconNet[107] is used as the reconstruction network (Θ).

at different MRs. For instance, rows 1, 20, 39 in column (c) are visually similar to

the images shown in column (a), whereas rows 58, 77, 96 in column (c) are similar to

the ones in column (b). These observations suggest that rate-independent Φ shares

characteristics of vanilla Φ’s across a range of MRs.

Row 1 Row 9 Row 17 Row 25 Row 33 Row 41

(a) Vanilla Φ, MR = 0.04

Row 1 Row 20 Row 39 Row 58 Row 77 Row 96

(b) Vanilla Φ, MR = 0.10

Row 1 Row 20 Row 39 Row 58 Row 77 Row 96

(c) Rate-Independent Φ

Figure 3.10: The figures show the visualization of the rows of the learned Φ in the

spatial (top) and Fourier (bottom) domains for the ReconNet architecture. The earlier

rows of Φ in the case of Rate-Independent CS for the MR range [0.04,0.10] resemble

the rows of Φ obtained using the vanilla training algorithm at MR = 0.04, while the

later rows look similar to the rows of the vanilla Φ for MR = 0.10.
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Rate-Independent CS for Object Tracking

We use object tracking in order to provide a proof of concept for Rate-Independent CS.

In our framework, the frames of the video for object tracking are reconstructed using

the measurements acquired by the spatial multiplexer that is learned in conjunction

with the reconstruction algorithm, and the goal is to track the main object in the

scene. We choose ReconNet [107] as the underlying network architecture. We use

Kernelized Correlation Filter (KCF) [66], an off-the-shelf tracker, for our experiments.

We use HoG features for the images and Gaussian kernel for the tracker. We use a

well-known dataset of 15 publicly available videos [168]. We consider three different

simple MR adaptation schemes in order to illustrate how Rate-Independent CS can

be used for sample-efficient object tracking:

(a) Linearly decreasing MR: For a given video, we use an initial MR= m, and

steadily decrease such that the final frame of the video is acquired at MR= k. We

compare the performance of Rate-Independent CS with that of the vanilla framework,

for the case where the MR is decreased linearly with the frame number. In this

experiment, we choose the operating MR range to be [k,m] = [0.04, 0.25], and the

vanilla network is trained at MR= 0.25. This adaptation scheme could be utilized for

an energy/memory constrained application. The initial MR is set to m = 0.25.

(b) Content-based MR adaptation using Euclidean loss: Here, we compute the

normalized Euclidean loss between successive frames of the video. If the difference

is smaller α, we reduce the number of measurements for the next frame by a fixed

amount ∆MR. If the difference is larger than β, we increase the number of mea-

surements for the next frame by ∆MR. This scheme can be viewed as a simple

form of motion-based MR adaptation. For the experiment, we choose the operat-
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ing MR range to be [0.04, 0.25], and the vanilla network is trained at MR= 0.25,

α = 0.15, β = 0.3,∆MR = 3.

(c) Content-based MR adaptation using maximum correlation: For each frame

of the video, the tracking algorithm outputs the maximum response value of cross-

correlation ∈ [0, 1] between the templates and the frame, which indicates the confi-

dence of the tracker, and is used to localize the object. We utilize this value to deter-

mine the MR for sensing the next frame. If the max. correlation is smaller than γ, we

increase the number of measurements for the next frame by a fixed amount ∆MR.

If the max. correlation is larger than γ, we decrease the number of measurements for

the next frame by ∆MR. In this experiment, we choose the operating MR range to

be [0.04, 0.10] , and the vanilla network is trained at MR= 0.25, γ = 0.3,∆MR = 3.

In each of the above cases, we compare the performance of the reconstructions

obtained using Rate-Independent CS to the vanilla training algorithm, using Recon-

Net as the reconstruction architecture. The performance is measured in terms of the

average precision of the localizations, for a pixel error threshold of 20 pixels. In each

case, we also calculate the average MR over the entire database, that the heuristics

lead to.

Results: The results are shown in Table 3.2 and visualizations are provided in Figure

3.11. Clearly, as expected, Rate-Independent ReconNet is superior in terms of the

tracking performance by a huge margin, because the vanilla network yields poor

reconstructions at MRs for which it is not trained specifically. For comparison, the

tracking performance with full images (oracle, i.e no compression) is about 80% for a

20 pixel error threshold. Also, for the heuristics and the thresholds chosen, the average

MR for the Rate-Independent case is much lower, and at the same time our approach

maintains high tracking performance. We also observe that the MR determination

based on maximum correlation is superior to the one based on Euclidean loss between
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Method

MR adaptation approach

Linear Decrease Euclidean Loss Detector Confidence

AP Avg. MR AP Avg. MR AP Avg. MR

Vanilla 54.29 % 0.1444 46.08 % 0.1113 63.31 % 0.0749

Rate-Independent CS 79.56 % 0.1444 70.82 % 0.1106 77.47 % 0.0462

Table 3.2: Object tracking performance comparison of the Rate-Independent frame-

work with the single-MR vanilla framework for dynamically varying MR. Results

clearly show that Rate-Independent CS is superior in terms of average precision (AP)

as well as the average number of measurements made.

successive frames. It is possible to have more sophisticated approaches to determining

the best MR for each frame, and optimize the values of α, β, γ and ∆MR, but such

an elaborate study is beyond the scope of this chapter.

Rate-Independent CS for Image Recognition

In this section, we extend the ideas presented for the image reconstruction problem

to a very different task of image recognition, in order to demonstrate the wide appli-

cability of the proposed method. We would like to perform image/object recognition

directly on the multiplexed measurements obtained from the camera, bypassing recon-

struction. Also note that the measurement operator learned in this case is optimized

for the task of image recognition. We use two widely used datasets – MNIST and

CIFAR-10 – for this purpose. For MNIST, we use a modified version of the LeNet-5

architecture[101] with 3 convolutional layers, two FC layers and a softmax layer. We

add two FC layers at the input of the network, of which the first serves as Φ and

the second FC layer is the matrix Ψ. For CIFAR-10, we modify the 32 layer ResNet
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Figure 3.11: Visual results on two videos for the object tracking, using maximum

correlation of the detector to dynamically vary MR. For each video, the top row

shows the frames acquired with no compression (conventional imaging, referred to

as the oracle). The second and third rows display the reconstructions using Rate-

Independent ReconNet (trained for MR = [0.04, 0.10] and vanilla ReconNet (trained

for MR = 0.10) respectively. Blue, green and red boxes show the object locations for

ground-truth, Rate-Independent ReconNet and vanilla ReconNet respectively. Unlike

the rate-independent framework, as MR is varied, the reconstructions are very poor

in the vanilla case, leading to poor tracking performance.

model for CIFAR [63] by adding two fully connected layers at the input of network

similar to MNIST model.

Results: Figure 3.12 shows comparison between Rate-Independent CS and vanilla

training algorithm for different variations of [k,m]. We observe that the performance

of Rate-Independent CS decreases slowly as the number of measurements decreases

within the operating range for both MNIST and CIFAR-10. This is contrary to the

performance of vanilla training algorithm where the performance falls more steeply

as we move away from training MR. For the case of CIFAR-10, we note that a rate-
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independent network for MR = [0.10, 0.25] performs on average 8.49% points and up

to 29.12 % points better than a vanilla network trained for MR = 0.25, when tested

over all MRs.

3.4 Conclusion

In this chapter, we considered how we can encode interesting design constraints

into the learning of measurement operators jointly with the reconstruction/inference

network. We show how to determine the best number of measurements for compres-

sive sensing jointly by solving a rank minimization problem. We propose regulariza-

tion functions that encourage sparse singular values, which can be readily integrated
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Figure 3.12: Rate-Independent CS results for image recognition for MNIST hand-

written digit recognition (n = 784) and CIFAR-10 object recognition (n = 1024) –

compared to the vanilla training algorithm trained for a single MR. Clearly, Rate-

Independent CS is stable over the chosen operating range compared to the vanilla

framework.
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into deep learning frameworks. We demonstrate the effectiveness of the proposed

methods on both image reconstruction and recognition. We also design a novel train-

ing algorithm for compressive imaging that enables training a single network that can

be operated over a range of measurement rates by ensuring that predetermined subsets

of the measurement operator are also valid measurement operators. This overcomes

a major drawback of previous data-driven algorithms and makes the system more ef-

ficient. Our rate-independent framework performs significantly better than previous

algorithms that work only for a single measurement rate. We demonstrate this on

two important problems – image reconstruction and image recognition. Furthermore,

through object tracking, we have shown how the rate-independent framework can be

utilized in systems with time-varying constraints on the measurement rate. We hope

that the algorithm and results presented in this chapter will enable researchers to

adopt spatial multiplexing/ compressive imaging more easily in real-world scenarios.
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Chapter 4

UNROLLED PROJECTED GRADIENT DESCENT

FOR MULTI-SPECTRAL IMAGE FUSION

The research in this chapter was carried out when I worked as an intern in Mit-

subishi Electric Research Laboratories, Cambridge, MA.

4.1 Introduction

Multi-spectral (MS) imaging, widely used in remote sensing related areas, allows

sensing of images across a wider range of wavelengths compared to conventional RGB

imagers. The bands of interest in multi-spectral imaging include RGB, near infrared

(NIR) and short-wave IR (SWIR). Advantages of MS imaging lie in several aspects

such as (a) better discrimination of objects with different material properties which

may otherwise be very similar in the RGB bands and (b) more information gathering

capability in the presence of harsh atmospheric conditions such as haze and fog, as

the IR waves can travel more easily through these media, compared to visible light.

Multi-spectral sensing presents an interesting challenge. It is necessary in many

applications to have both high spatial and spectral resolutions. However, there is a

fundamental trade-off between the bandwidth of the sensor and the spatial resolution

it can have. High spatial resolution typically can be achieved by panchromatic image

covering the visible bands. This leads to the problem of multi-spectral image fusion.

Given a set of low resolution images obtained at different wavelengths as well as a

high resolution panchromatic image which does not have spectral information, we

would like to fuse these two modes of information in order to produce a set of images

which has both high spectral and high spatial resolutions.
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MS image fusion is basically an ill-posed problem. To solve this problem, various

methods have been proposed, either model-based [177, 176, 7, 104] or data-driven

methods [100, 114, 119, 166]. Following many recent studies on model-based deep

learning [152, 28, 59], we formulate a combination of model-based and data-driven

solution based on deep learning in order to solve the multi-spectral image fusion prob-

lem. We unroll the iterations of the Projected Gradient Descent (PGD) algorithm,

where the projection step is replaced with a convolutional neural network (CNN).

Compared to other existing purely data-driven techniques, our work is based on well

studied signal processing frameworks and thus, more interpretable and provides su-

perior performance compared to the various baselines considered.

4.1.1 Contributions

1. We unroll the iterations of PGD using a learned CNN as the projection op-

erator onto the set of high resolution multi-spectral images. This provides a

signal processing-based perspective to the solution and makes the deep learning

solution more interpretable.

2. In order to overcome the additional challenge of the unknown forward operator,

A, we consider two possible solutions. In the first case, we set A = I, the

identity operator. With this, the fusion problem becomes a denoising problem.

We observe that this reduces to existing deep learning solutions.

3. In the second case, we learn both the projection operator as well as the forward

operator A by parameterizing it based on the desirable properties. We show

improved results using this framework compared to baselines.
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4.2 Prior Art

In this section, we briefly review relevant algorithms for MS fusion as well as other

inverse problems. For thorough surveys, the readers are referred to [8, 112, 183].

Model-based iterative methods: In order to solve ill-posed problems, there is

a rich literature on simple prior models of the desired signal. In the case of the

multi-spectral fusion, priors include sparsity in the gradient domain – total-variation

regularization, low-rank models [177, 176], over-complete dictionary learning with

regularizers on the coefficients [7, 104]. These methods are simple to design and have

theoretical guarantees. However, in terms of recovery performance as well as time

complexity during testing, these methods fare poorly compared to purely data-driven

methods described next.

Purely data-driven approaches: In recent years, the resurgence of deep learning

[100] has led to feed-forward non-iterative approaches for several solving inverse prob-

lems in low-level vision including compressive sensing, single-image super-resolution,

deblurring [114] and multi-spectral fusion [119, 166]. These methods are model-

agnostic and simply learn a mapping from the measurements to the desired signal in

a purely data-driven fashion. Compared to the model-based iterative methods, these

methods generally yield superior results, and are also computationally faster owing

to their non-iterative nature (a feed-forward operation at test time) as well as the

ease of implementation on Graphics Processing Units (GPUs).

Model-based deep learning: Although purely data-driven approaches using deep

learning perform very well compared to model-based shallow methods, they are less

interpretable than the latter. In order to bridge the gap between understanding
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and performance, many methods recently combine iterative methods with the deep

learning. This can be achieved in several ways. Sun et al. first proposed the ADMM-

Net for MRI [152]. Here, the iterations of ADMM are unrolled and the projection

operator as well as the shrinkage functions are learned from data. Chang et al.

proposed the OneNet [28] for inverse problems like super-resolution and restoration.

It unrolls the ADMM algorithm such that projection operator is a deep learning

method. More recently, Gupta et al. [59] propose a similar approach in the case

of Projected Gradient Descent (PGD) and also provide theoretical guarantees for

convergence. In this chapter, we combine PGD with deep learning for the problem of

MS image fusion. We unroll the iterations of PGD such that the projection operator is

computed using a trained convolutional neural network (CNN) and all the parameters

are learned end-to-end using a training dataset. This problem is different from other

inverse problems in two aspects – (a) we are given the pan-chromatic image which acts

as important side information, and (b) the forward operator A is usually unknown.

We describe the proposed algorithm next.

4.3 Unrolling PGD Using a CNN as the Projection Operator

We first consider a general problem where we have measurements y ∈ Rm of

unknowns x ∈ Rn via a linear forward operator A ∈ Rm×n, i.e.

y = Ax. (4.1)

In real applications, we typically have m < n, leading to an underdetermined

linear system with infinite solutions in general. In order to have a unique solution,

we solve a constrained optimization problem as following

x∗ = argmin
1

2
||y −Ax||22 s.t. x ∈ C, (4.2)

where C is the constraint set. In our case, C is the set of feasible images. Generally,

the set C is chosen based on domain knowledge, e.g., the set of images with small `1
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norm of the wavelet coefficients. A popular approach to solving the above problem in

image processing is by employing the Projected Gradient Descent (PGD). It consists

of two alternating steps:

wk+1 = xk + αAT (y −Axk), (4.3)

xk+1 = ΠC(w
k+1). (4.4)

The first step in the above optimization is gradient descent, which is guaranteed

to reduce the value of the cost function given a suitable value of the learning rate α.

However, the output of the gradient descent step is not guaranteed to be a feasible

point. The second step is to map the intermediate output from gradient descent to

the closest point in the set of feasible solutions through the projection operator ΠC.

The MS image fusion problem can be formulated as a linear inverse problem.

Let IP , IL, and IH represent the vectorized versions the panchromatic image, low

resolution, and high resolution multi-spectral images, respectively. Hence y = (IP ; IL)

and x = (IP ; IH). The forward operator A models the mapping from high resolution

to the low resolution multi-spectral images.

However, there are several challenges to solving MS image fusion. First, in the

case of multi-spectral aerial images considered in this chapter (as well as natural

images in general), it is not possible to provide a precise mathematical definition of

a feasible set and it is also not clear what a good approximate to the constraint set

is. The goodness of approximate constraint set may also depend on the properties of

A. Second, although we know that the forward operator A can be represented as a

combination of blurring and downsampling, the exact coefficients of the blur kernel

are unknown.

In existing methods, some of the widely used hand-crafted priors include the spar-

sity priors in wavelet and gradient domains. In the case of dictionary learning, an
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over-complete sparsifying basis is also learned from the data and sparsity priors are

used on the coefficients. However, these techniques fall short in terms of providing

high quality solutions and have given way to purely data-driven non-linear methods

using deep learning, as explained in Section 4.2. A main drawback of deep learn-

ing methods they are not easily interpretable and it is unclear what functions they

perform in terms of signal processing.

Following similar works for compressive imaging, MRI, and super-resolution, etc.,

we propose the following framework. We unroll the iterations of PGD (Eqs. (4.3)

and (4.4)), and use a trained CNN in each step in place of the projection operator.

We choose apriori the number of iterations to unroll and train the entire pipeline end-

to-end. This is also illustrated in Fig. 4.1. Therefore, although the core architecture

of the CNN is hand-crafted, at a higher level, the algorithm is based on well-studied

methods.

CONFIDENTIAL 1

Low resolution interpolated  
MS images: yk

Σ ×

Learning 
rate α

Σ

Output from previous 
iteration: xk

Output of 
current 
iteration: xk+1

Step 1: Gradient Descent Step 2: Projection

Unknown 
forward operator

High resolution 
PAN image

A AT CNN-
+

+

+

Figure 4.1: A single stage of unrolled PGD framework we propose in this chapter.

The gradient descent step is carried out as usual and a CNN is used as the projection

operator onto the set of high resolution multi-spectral images. Note that both forward

operator A and the layers in the CNN are learned end-to-end jointly.
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4.3.1 Using the Denoising Formulation i.e., A = I

We can solve the optimization problem by using the bicubic interpolations of the

low resolution images as the measurements y and by simply setting A = I, where I

is the identity matrix. Now, the original problem of fusion reduces to the problem of

denoising. We note that under this new formulation, the iterations of PGD reduce to

simply applying the projection operator directly on the measurements y in a single

step. In our case, where the CNN is performing the operation of the projection

operator in the unrolled PGD, only a single stage of CNN layers that maps y to x

suffices, i.e., the number of stages = 1. Here, we make the interesting observation that

this formulation, depending on the network architecture, reduces to the framework

presented in [119] and [166], but arrived at using a signal processing methodology.

4.3.2 Using the General Formulation i.e., A is Learned

As a natural extension to the above, we investigate the possibility of jointly learn-

ing the forward operator A, the learning rate α and the fusion algorithm. After

bicubic interpolation, the low resolution images are of the same size, albeit blurred

versions of the high resolution images. This suggests modeling A as a blurring op-

erator. We assume that the same blurring filter, which we represent as a square

convolutional kernel KA of size S × S, operates on the entire image as well as on

different spectral channels. We structure the kernel to be of the form

KA = KB + KI, (4.5)

s.t.
S∑
i=1

S∑
j=1

KA(i, j) = 1 and KA(i, j) ≥ 0, ∀i, j ∈ {1, . . . , S}

where the coefficients of KB are learned and KI is the identity filter. This encourages

the central coefficient of the filter to be higher than the other elements and the
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constraints on KA ensure that it is a valid blurring filter, and the corresponding

operator A is a valid blurring operator. In our expts., we have chosen the size of KA

to be 9× 9.

4.4 Experiments

Image Name Bicubic Shrinkage Fields [141] DeepCASD [167]

Unrolled PGD

A = I (reduces to [166]) A is learned

Number of Layers Number of Iterations

4 12 20 1 3 5

Moffett
32.24 34.21 34.53 37.44 38.29 37.46 37.59 38.52 38.17

0.4788 0.6981 0.7185 0.9710 0.9768 0.9729 0.9706 0.9778 0.9776

Cambria Fire
35.32 37.51 37.62 37.83 38.91 38.71 37.99 38.91 39.33

0.5887 0.7941 0.7987 0.9734 0.9734 0.9696 0.9775 0.9765 0.9771

Cuprite
32.44 34.33 34.52 36.88 37.56 36.82 37.95 38.56 39.02

0.5060 0.7437 0.7616 0.9750 0.9842 0.9823 0.9794 0.9837 0.9840

Los Angeles
27.96 30.39 30.50 36.27 37.38 37.28 36.42 37.79 37.77

0.4888 0.7628 0.7761 0.9702 0.9755 0.9760 0.9712 0.9777 0.9790

Mean
31.99 34.11 34.29 37.11 38.03 37.57 37.49 38.45 38.57

0.5156 0.7497 0.7637 0.9760 0.9775 0.9752 0.9746 0.9789 0.9794

Table 4.1: The table shows the experimental results of multi-spectral image fusion in

terms of PSNR in dB (the top number in each cell) and SSIM (the bottom number

in each cell) on the test set. Clearly, the results using unrolled PGD are superior to

all the baselines considered. Also observe that the results improve further when A is

learned. Note that when A = I, PGD reduces to a single projection operator as in

[166]. Then number of layers refers to the number of layers in the projection CNN.

In the case where A is learned, the “number of iterations” refers to the number of

steps of PGD we unroll. The CNN in each projection operation contains 4 layers of

convolutions + ReLU.
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Training and testing datasets: For all our experiments, we use a dataset of 138

high resolution aerial MS images with 16 channels and a panchromatic image of size

256 × 256 pixels. These images are synthesized using the AVIRIS hyper-spectral

image database [127]: each multi-spectral image is generated by a weighted linear

combination of a band of hyper-spectral images. For training, we also need access

to the low resolution images. The low resolution multi-spectral images are produced

by first low-pass filtering (anti-aliasing) and then downsampling by a factor of 2 (we

focus on 2× super-resolution, however the method can be extended to other factors).

The test set consists of four low resolution multi-spectral images with the same 16

channels – Moffett, Cambria Fire, Cuprite and Los Angeles – of size 512× 512 and a

panchromatic image, also of size 512×512 [167]. As before, we form 256×256 images

of the test set which serve as the input to the algorithm. Thus, at test time, the goal

is to fuse the lower resolution 256 × 256 multi-spectral images with the 512 × 512

panchromatic image in order to provide a high resolution multi-spectral output of

resolution 512× 512.

Network architectures: As described in Section 4.3, the projection operator (Equa-

tion 4.4) is learned from training data, and we choose to implement it using a CNN.

Based on the work of Wei et al. [166], the architecture of this network is simple

with 4 layers of 2D convolutions + Rectified Linear Units (ReLUs) with a residual

connection connecting the bicubic interpolated low resolution multi-spectral images

(y) to the output of the penultimate layer of the CNN. We set the the filter size in

all layers to be 9× 9 and we use 32 feature maps for layers 1 and 2. Layer 3 produces

17 feature maps in order to be compatible with the number of channels of the input,

and the output produces the desired 16 multi-spectral channels.
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Training and testing protocol: The low resolution 128×128 multi-spectral train-

ing images are first upsampled using bicubic interpolation to match the resolution of

the panchromatic image i.e., 256 × 256. Using the 138 pairs of low-res and high-res

training images and a stride of 11, we first create a dataset of about 60832 patches (of

size 32× 32× 17) of the interpolated low-res multi-spectral and panchromatic images

which form the input to the fusion algorithm, and 32×32×16 high-res multi-spectral

images which form the desired output. About 1800 of these patches are used as the

validation set in order to select the hyperparameters. For the case with A = I, the

PGD algorithm reduces to simply applying the projection operator (the CNN, in our

case) once on the low-res input y, and thus, the algorithm essentially reduces to the

one described by Wei et al. [166]. For this case, we train 3 networks with varying

depths of 4, 12 and 20 layers. When A is learned, we also need to choose the number

of iterations, niter of PGD to unroll. We conduct experiments with niter = 1, 3, 5. The

networks are trained using Adam optimizer [93] for 2 × 105 iterations with a batch

size of 32. We observed empirically that the validation error converges for the chosen

number of iterations and takes a few hours to train on an Nvidia TitanX. We use the

mean squared error over the batch between the desired high resolution patches and

the output of the algorithm as the loss function. All the networks are trained using

Tensorflow [2]. During test time, the images are split into non-overlapping patches

and the fed through the trained networks. We use both Peak Signal-to-Noise Ratio

(PSNR) as well as Structural Similarity Index (SSIM) [164] to measure the perfor-

mance of the algorithms. The measures are computed channel-wise and averaged over

the 16 multi-spectral channels.

Baselines: We provide experimental comparisons of the proposed approach with

three baseline algorithms: (1) Bicubic interpolation, where the output of the algo-
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Bicubic Interpolation Shrinkage Fields Deep CASD PGDCNN : A=I PGDCNN : A is learned Ground Truth

Figure 4.2: Visual comparison of results for the “Cambria Fire” image (top row) and

the zoomed in portions (bottom row). It is clear that the unrolled PGD (PGDCNN)

provides much sharper spatial resolution and preserves spectral information compared

to the baselines.

Bicubic Interpolation Shrinkage Fields Deep CASD PGDCNN : A=I PGDCNN : A is learned Ground Truth

Figure 4.3: Visual comparison of results for the “Los Angeles” image (top row) and

the zoomed in portions (bottom row). It is clear that the unrolled PGD (PGDCNN)

provides much sharper spatial resolution and preserves spectral information compared

to the baselines.

rithm is the channel-wise upsampling of the lower resolution images using bicubic

interpolation, (2) Shrinkage field networks by Schmidt and Roth [141] which is a

trainable architecture, but is applied to each channel independently and (3) Deep

Coupled Analysis and Synthesis Dictionary (CASD), a recent work by Wen et al.[167]
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uses channel-wise outputs from the Shrinkage Field Network and a CASD framework

in order to exploit the inter-channel relationships in order to improve fusion results.

Results: The results of multi-spectral fusion on the test images using various algo-

rithms are shown in Table 4.1. We use two performance metrics in order to measure

the performance of the algorithms: PSNR and SSIM. From the table, we clearly ob-

serve that the results using unrolled PGD when the forward operator A is learned

are superior to bicubic interpolation, shrinkage fields and DeepCASD by 3-6 dB, and

about 0.6 dB better than unrolled PGD with A = I. Figs. 4.2 and 4.3 show visual

results on two test images illustrating that the proposed algorithm provides much

sharper resolution and preserves spectral information compared to the baselines. We

also note that, unrolled PGD-based multi-spectral fusion can be performed extremely

fast. On an Nvidia TITANX with batch processing of all the patches at once, it takes

0.09, 0.16 and 0.22 seconds for niter = 1, 3, 5 respectively.

4.5 Conclusion

In this chapter, we developed a data-driven based approach for multi-spectral

fusion that was inspired by commonly used projected gradient descent (PGD). We

unroll PGD for a predefined number of iterations such that the projection operation

is performed by a convolutional neural network (unrolled PGD). As the forward op-

erator A is not known in our case, we develop two variants of unrolled PGD. First,

we use a denoising formulation with A = I, the identity operator. We make the

observation that this reduces to existing black-box deep learning methods. Second,

as a generalization of this approach, we model A as a blur kernel and learn its coeffi-

cients jointly with the CNN. Our experiments show that the learning-the-projection

operation outperforms several baselines considered, and improves the results further

with a learned operator A.
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Chapter 5

TEMPORAL TRANSFORMERS: JOINT LEARNING OF INVARIANT AND

DISCRIMINATIVE TIME WARPS

5.1 Introduction

Guaranteed invariances of machine learning algorithms to nuisance parameters is

an important design consideration in critical applications. Classically, invariances can

only be guaranteed under a model-based approach. Learned representations however

have not been able to guarantee invariances, except by empirical tests [56]. Learning

invariant representations that build on analytical models of phenomena may hold the

cue to bridge this gap, and can also help lend explainability to the model.

However, deep learning presents an especially hard challenge for learning ex-

plainable invariants, primarily due to incompatibility between the mathematical ap-

proaches that underlie invariant design, and the architectures prevalent in deep learn-

ing. There have been recent attempts at leveraging model-based and data-driven ap-

proaches to learning invariant representations across spatial transforms [88, 83, 170],

illumination [156, 110], and view-point [106]. On the other hand, learning invari-

ant/robust representations to temporal rate-variations has received significantly lesser

attention. If tackled well, many applications of human activity modeling will bene-

fit, including more robust recognition algorithms for human-robot interaction, richer

synthesis of human motion for computer-generated imagery, and health applications.

Hybrid model- and data-based approach: In this chapter, our chosen ap-

plication is activity classification from RGBD devices, where skeleton data may be

available. Activities such as walking can be performed at different rates by different
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Figure 5.1: The Temporal Transformer Network (TTN) is a trainable module that is

easily added at the beginning of a time-series classifier. Its function is to warp the

input sequences so as to maximize the classification performance, as shown in the

figure for two classes of waveforms which become more discriminative after passing

through the TTN. The sub-modules of the TTN are explained in Section 5.4.

subjects owing to physiological, and biomechanical factors [33, 162]. We would like

to design representations that provide robust classification against such nuisance fac-

tors. To do this, we adopt a model-based approach, and constrain certain layers in

deep-models using the model. The model for temporal variability is adopted from

past work in elastic temporal alignment which considers temporal variability as a

result of a temporal diffeomorphism acting on a given time-series [150]. The space

of such diffeomorphisms has a group structure, and can be converted to simpler ge-

ometric constraints by exploiting contemporary square-root forms derived from the

diffeomorphic maps [147].

Compatibility with deep architectures: We design a novel module, which we

refer to as a Temporal Transformer Network (TTN). The hallmark of this module is

that it can be easily integrated into existing time-series classifiers such as Temporal

Convolution Networks (TCNs) [90] and Long Short-Term Memory (LSTM) networks

[67]. TTN is explainable in the sense that it is designed so as to interact with the
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classification network in a predefined, predictable and visualizable manner. TTN is a

trainable network added at the beginning of the classifier and operates on the input

sequence by performing selective temporal warping of the input sequences. As such, it

has the ability to factor out rate variations, if present in the data, as well as increase

the inter-class separation by learning to align sequences in dissimilar classes away

from each other.

Application impact: Recognition of human activities from sensors such as mo-

tion capture (mocap) and depth cameras like the Microsoft Kinect and Intel RealSense

has been gathering a great deal of interest in the recent past. The cost of these sensors

is ever-reducing and the increasing effectiveness of pose estimation algorithms [157]

makes 3D skeletons an important sensing modality for action recognition. As the

problem of action recognition presents a large amount of variability both inter-class

as well as intra-class we choose it as the focus of this chapter.

Contributions

• We propose the Temporal Transformer Network (TTN), which performs joint rep-

resentation learning as well as class-aware discriminative alignment for time-series

classification including action trajectories.

• We design the TTN to generate highly expressive non-parametric, order-preserving

diffeomorphisms, which have favorable theoretical properties.

• We exploit the non-uniqueness of the optimal alignment (between equivalence

classes) to develop discriminative warps for improved classification.

• The proposed TTN can be easily integrated into existing time-series classification

architectures, with just a single line of code for the warping module.
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We validate our contributions by demonstrating improved performance on small and

large databases real datasets, as well as synthetic datasets, for action recognition from

3D pose obtained from two different modalities – Kinect and mocap. The combined

architecture of the TTN and the classifier consistently yields improved classification

performance compared to several baseline classifiers.

5.2 Related Work

Deep learning of invariant representations: One of the main inspirations

for this work is the paper by Jaderberg et al. [77] on Spatial Transformer Networks

(STNs) where a smaller network first predicts a geometric transform of the input

grid parameterized by affine transforms or thin plate splines. The transformation is

then applied to the input before feeding it to the classification network. A recent

work is that of Skafte-Detlefsen et al. [144] who improve the performance of spatial

transformers by replacing affine transforms and thin plate splines with a richer class of

parameterized diffeomorphic transforms called continuous piecewise-affine transforms,

but at the expense of complex implementation and considerably longer training times.

Both these works are aimed at building invariances to spatial geometric transforms

of images. Capsule networks by Sabour et al.[139] expand the expressive capacity of

CNNs by allowing them to learn explicit spatial relationships. An interesting recent

work by Tallec and Ollivier [154] show that LSTM networks have the capability to

learn to warp input sequences. Our experiments show that by integrating LSTMs

with the module designed in this chapter, the performance can be further increased,

as the proposed framework can also lead to more discriminative representations.

In this chapter, we design a module to predict warping functions in the tempo-

ral domain which when applied to the input sequences lead to higher classification

performance. This requires the predicted warping functions, γ’s to satisfy the order-
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preserving property. Moreover, in our case, the predicted warping functions are non-

parameterized and thus, can span the entire space of rate-modifying transforms. The

warping is also elastic, as opposed to rigid deformations which is the case with STNs.

We note that these are important design requirements in the case of temporally vary-

ing signals, that are different from transforms in the 2D spatial domain.

Alignment of time-series data: The most commonly used method to align

time-series data is perhaps Dynamic Time Warping (DTW) [14, 140]. DTW tries to

minimize the L2 distance between two time series after a time warping is applied to

one of them, and is agnostic of class information. To address some of DTW’s short-

comings, new methods have been proposed recently, including the elastic functional

data and shape analyses [149, 150] which defined proper metrics that are invariant

to time warping, and soft-DTW which is a differentiable loss function that may be

integrated into neural networks [35].

One of the major differences between our proposed approach and the aforemen-

tioned optimization-based time warping methods is that our approach does discrimi-

native warping based on class information and does not need signal templates. This

is further discussed in Section 5.4.

3D action recognition using deep learning: As sensing systems like the

Microsoft Kinect, Intel RealSense and motion capture are getting more effective at

acquiring depth and human pose estimation with even up to millimeter precision,

research and commercial interest in employing 3D pose data for action recognition

has understandably increased. Recent experiments suggest that for small datasets,

recognition accuracies are better with 3D pose information compared to video frames

[53]. That simple landmark-based or skeleton-based action recognition can be effective

is supported by evidence from works in psychology which show that humans are

excellent at recognizing actions only from a few points on the human body [81].

93



Recurrent neural architectures, especially Long Short-Term Memory (LSTM) net-

works have been used to perform 3D action recognition e.g. [44, 142]. Song et al.

propose including layers for spatial and temporal attention (STA-LSTM) [146] which

greatly improves the recognition performance. For majority of the experiments in this

chapter, we will use the temporal convolution network (TCN) with residual connec-

tions [99] as they are effective, simple to build and faster to train compared to LSTM

based networks. Additionally, Kim and Reiter have shown excellent results on using

TCNs for 3D action recognition [90]. This network outperforms STA+LSTM [146] for

3D action recognition. They further show that TCNs can learn both spatial and tem-

poral attention without the need for special attention layers. Also, the network filter

activations are interpretable by design because of the residual connections. We also

note that the TCN architecture presented in [90] incorporates pooling mechanisms

inside the network.

We note that more recently, newer architectures have proposed modifications to

baseline architectures by using graph convolutions to better take into account the

spatial structure of the joints in the human body [171]. However, it has a much

higher computational load. Other representations include image-based ones [85, 106],

and fusing skeleton information with velocity information [29] etc. Our contributions

in this chapter are orthogonal to these works, and the main focus of the chapter is to

design a specialized module for learning rate-robust discriminative representations.

As such, for our experiments, we choose two effective widely-used simple-to-implement

architectures as our baselines – TCNs and LSTMs – and demonstrate improvements

in recognition performance over these frameworks.
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5.3 Diffeomorphic Models for Rate Variation

A continuous time-series can be represented as a single-parameter curve, which

we denote by α(.), where t ∈ [0, 1] is the parameter. In our case, t is time and we

assume that each α(t) ∈ RN . Figure 5.2 shows an illustration of this representation.

Another curve β is a resampling of α if β = α ◦ γ, where ◦ is a function composition,

and γ is the resampling function. We focus on the set of γ’s which form the group

of order-preserving diffeomorphisms Γ. In physical signals such as human actions,

two actions α1, α2 differing only by a change of rate of execution obey the equation

α1 = α2 ◦ γ, for some γ ∈ Γ. Given a 1-differentiable function γ defined on the

domain [0, T ], for γ to be an element of Γ, γ needs to satisfy the following conditions:

γ(0) = 0, γ(1) = 1, and γ(t1) < γ(t2), if t1 < t2, (5.1)

The above conditions fix the boundary conditions, and imply that any γ ∈ Γ is a

monotonically increasing function. This property is also called order-preserving which

is important to the current discussion of action recognition as actions are critically

dependent on sequencing/ordering of poses/frames. It is easy to show that

• ∀γ1, γ2 ∈ Γ, γ1 ◦ γ2 ∈ Γ,

• γId ∈ Γ,

• ∀γ ∈ Γ,∃γ−1 ∈ Γ s.t. γ ◦ γ−1 = γId, where γId(t) = t, the identity warping

function.

These properties imply that the set of γ’s form a group Γ, where the group action is

function composition. We denote by γ̇, the first derivative of γ ∈ Γ, or

γ(t) =

∫ t

0

γ̇(t)dt,

∫ 1

0

γ̇(t)dt = γ(1)− γ(0) = 1 (5.2)
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Further, due to the monotonically increasing property of γ, we have γ̇ > 0. This in

conjunction with (5.2) implies that γ̇ has the properties of a probability distribution

function (positive, and integrates to 1), and the corresponding γ is thus equivalent to

a cumulative distribution function.

As we work with digitized signals from sensors such as Kinect and mocap, we

represent a discrete time series by X = {x1,x2, . . . ,xT}. In this chapter, we will

work with time series in RN i.e., each xt ∈ RN is called a frame of the sequence X.

More clearly, we have α(t) = xt, t ∈ {1, 2, . . . , T}. The warping function in the case

of a discrete time signal is a discretized version of γ ∈ Γ, which we represent using

γ with a slight abuse of notation. The derivative γ̇ can be computed by first order

numerical differencing. Thus, (5.2) now becomes

γ(t) =
t∑
i=0

γ̇(i) and
1

T

T∑
i=0

γ̇(t) = 1. (5.3)

Two sequences α and β are said to be equivalent if there exists a γ ∈ Γ such

that α = β ◦ γ, and the set {α ◦ γ},∀γ ∈ Γ is called the equivalence class of α

under rate variations and is denoted by [α]. In classical elastic alignment, given two

signals, a metric between sequences is defined as the minimal distance between their

equivalence classes. However, this approach can be used to develop class-specific

templates, and phase-amplitude separation [117] that reduces intra-class variance,

but does not promote inter-class separation. Once the equivalence classes are defined,

metrics are designed to compute distances between equivalence classes and develop

methods to compute statistical measures such as mean and variance, which can be

used to compute optimal alignments [150].

96



5.4 Temporal Transformers for Learning Discriminative Warping Functions

The main idea presented in this chapter is to use a specialized module, which we

call a Temporal Transformer Network (TTN) for neural network-based classification

which, given an input test sequence X, generates a warping function γ used to warp

the input sequence by computing X ◦ γ and feed it to the classification network. It

is important to note that the warping is carried out using linear interpolation. This

makes it possible to train both the TTN and the classifier jointly end-to-end as the

entire pipeline is (sub-) differentiable. Another notable aspect of this framework is

that the warping functions are predicted without a “class-template”. Even though

this sounds paradoxical, we will soon show that this allows our framework to jointly

learn features as well as achieve discriminative warps. This capability is makes our

framework more powerful than template-based matching techniques like Dynamic

Time Warping (DTW) and variants [14, 140].

Key Insight: Given two input sequences X1 and X2 such that they differ only by

a warping transform, the trained TTN would ideally predict γ1 and γ2, corresponding

to X1 and X2 respectively such that X1 ◦ γ1 = X2 ◦ γ2. However, we note that γ1 and

γ2 are not unique because X1 ◦ γ1 ◦ γ = X2 ◦ γ2 ◦ γ, ∀γ ∈ Γ. We believe this to be an

important and often overlooked fact, and is formally referred to as invariance to group-

action. The non-uniqueness of the warping functions is not really exploited in the

temporal alignment literature. The goal in past work in alignment has been to learn

a class-specific template using an EM-style optimization method, which is not unique

due to invariance to group-action. Non-uniqueness here presents an opportunity that

can be exploited to develop discriminative warps for classification problems.

The non-uniqueness of the warping functions can be advantageous as it expands

the expressive capacity for classification. Minimizing intra-class variations – rate
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variations in our case – is only one part of the problem. For classification, we would

also like to maximize inter-class variations. For example, if we have four sequences

X1, X2, X3 and X4 such that X1, X2 belong to Class A, and X3, X4 belong to class

B, the TTN has the capacity to predict γ1, γ2, γ3 and γ4 such that

• d(X1 ◦ γ1, X2 ◦ γ2) < d(X1, X2)

• d(X3 ◦ γ3, X4 ◦ γ4) < d(X3, X4)

• d(Xi ◦ γi, Xj ◦ γj) > d(Xi, Xj), i = 1, 2 and j = 3, 4,

where d(.) is the Euclidean distance between sequences. However, we do not explicitly

train the networks to achieve the above. Both the TTN and the classifier are trained

so as to maximize classification performance by minimizing the cross-entropy loss

between the predicted and true distribution over the class labels given the input

sequence. The TTN can be divided into three sub-modules:

Trainable layers: As shown in Figure 5.1, the input to the TTN trainable layers

is an input sequence. The input is then passed through a few layers of convolutions

and fully-connected layers. The network outputs a vector of length T , such that the

first element is set to be zero. T is the length/number of frames in the input sequence.

Let us denote this vector by v ∈ RT .

Constraint satisfaction layers: The output v is unconstrained, and hence, we

need to convert it into a valid warping function that satisfies Equations (5.1).

We divide the vector v by its norm, to get a unit-vector, followed by squaring

each of its entries. This will have the effect of converting the vector into a point on

the probability simplex. Thus, we use the following mappings:

γ̇ =
v � v

‖v‖2
, and γ(t) = T ·

t∑
i=1

γ̇(i), (5.4)
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where, � is the Hadamard product (element-wise multiplication). This is treated as

the network’s estimate of the derivative of the warping function, denoted by γ̇. We

compute the cumulative sum and multiply it by the length of the input sequence, T ,

in order to form the warping function γ as shown in Equation (5.4).

Differentiable temporal resampling: The warping function γ is then applied

to the input sequence using linear interpolation. We assume that the sampling rate

of the signal is high enough in relation to the speed of the activity, (in practice, 20

frames/sec is plenty for most common action recognition applications) that simple

linear interpolation of the frames is sufficient to get intermediate skeletons to look

realistic. The warping is done using the equation Y (tt) = X(ts) = X(γ(tt)), where X

and Y are the input and output sequences respectively, and ts and tt are the source

and target indices respectively. The frames of output sequence Y are to be defined

at regular intervals tt = 1, 2, . . . , T . As the source indices corresponding to these

times may not be integers, we use linear interpolation to find the values of X(γ(tt)).

This operation is sub-differentiable, as in the case of STN. Thus, we can write the

expressions of the required gradients as follows (these expressions are adapted from

Jaderberg et al. [77]). If Xj is the input sequence of the jth joint, Y j is the warped

sequence output by the TTN module and i ∈ {1, 2, . . . , T} is the time index, we have:

∂Y j
i

∂Xj
τ

=
T∑
τ=1

max(0, 1− |tsi − τ |) (5.5)

∂Y j
i

∂tsi
=

T∑
τ=1

Xj ·


0, if |tsi − τ | ≥ 1

1, if τ ≥ tsi

−1, if τ < tsi

(5.6)
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5.5 Experimental Results

All networks in this chapter are trained and tested using Tensorflow [2]. Due to

space constraints, some training and testing details and results are provided in the

supplement.

5.5.1 Synthetic datasets

(1) Demonstrating discriminative properties of TTN: We consider a two-

class classification problem where the two classes are one-dimensional time series

signals of length 100. Let us denote each sequence in the dataset by X ∈ R100. All the

signals are Gaussian functions with varying amplitude. Signals in class 1 are centered

at t = 0.45 while signals in class 2 are centered at t = 0.55. Further, we corrupt

the function with additive Gaussian noise (N (0, 0.2)). Samples of these functions

are shown in Figure 5.3. We generate 8000 training and 2000 test sequences evenly

balanced between classes 1 and 2. We use a simple classifier with a one-layer fully

connected layer. The TTN is a 2-layer network with 1 convolutional layer producing 1

feature map with a filter of size 8, and 1 fully-connected layer. We train the networks

for 103 iterations using Adam optimizer with an initial learning rate of 10−4 for the

classifier. The weights of the TTN are updated at one-tenth the learning rate of the

classifier. Figure 5.3 shows the test signals, corresponding outputs of the TTN, as

well as the TTN-generated warping functions for every test input. It is clear from the

figures that the TTNs predict class-specific warping functions in order to separate the

peaks in the signals which makes them more discriminative. Note that this behavior

arises automatically by minimizing the cross-entropy loss. In order to visualize the

TTN outputs better, we perform post-processing by warping the TTN outputs with
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Vanilla TTN

Unwarped 100.00 ± 0.00 % 100.00 ± 0.00 %

Warped 96.31 ± 0.021 % 99.03 ± 0.15 %

Table 5.1: Recognition Results (%) for Synthetic Dataset 2. Addition of TTN Clearly

Outperforms the Baseline.

γ−1
µ , where γµ =

∑N
i=1 γi, where N is the size of the test set. This experiment clearly

shows that TTNs are effective at increasing inter-class variations, as desired.

(2) Demonstrating rate-invariance of TTN: In this case, we construct a

dataset such that rate variations in the signals are the major nuisance parameter. In

this scenario, intuitively, minimizing classification error should lead to the following:

different signals belonging to the same class, but differing (approximately) only by a γ

should come closer to each other after passing through a trained TTN module. In class

1, we have signals which are a single Gaussian function with random warping applied

and additive Gaussian noise added to them. Signals in class 2 are similar except that

they a are mixture of two Gaussian functions. As before, we generated 8000 training

sequences and 2000 test sequences evenly balanced between classes 1 and 2. These are

shown before (Column 1) and after random warping (Column 2) in Figure 5.4. The

TTN, classifier and the training and testing protocol are the same as in dataset (1)

above. From column 3 in Figure 5.4, it is clear the TTN leads to reduction in intra-

class rate variations. Table 5.1 shows the classification accuracies obtained with and

without the TTN module (averaged over 10 runs). When no warping is present in the

input data, both variants yield perfect accuracy. When warping is introduced in the

dataset, the performance of the vanilla model (i.e., without TTN) drops significantly.

With the addition of the TTN module, most of the lost performance can be recovered.
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5.5.2 ICL First-Person Hand Action dataset

In this section, we conduct experiments on a recently released real-world dataset

of hand actions [53]. The dataset contains 3D hand pose sequences with 21 joint

locations per frame of 45 daily hand action categories interacting with 26 objects, such

as “pour juice”, “put tea bag” and “read paper”. These sequences are performed by

6 subjects and are acquired using an accurate mocap system. For our experiments,

we use the training/test splits suggested by the authors of the dataset [53], with

subjects 1,3,4 used for training and the rest for testing. The training set contains

600 sequences and the test set contains 575 sequences. As the sequences are of

varying lengths, we uniformly sample the sequences such that all sequences contain

50 samples. If the sequences are shorter than 50 samples, we use zero-padding. As

there are 21 joints per frame, each input sequence is of dimension 50×63 (21×3 = 63).

We normalize the sequences such that the wrist position of the first frame is at the

origin. We conduct our experiments with two different types of classifiers widely used

for action recognition: (1) Temporal Convolutional Network (TCN) and (2) 2-layer

LSTM, showing that the proposed TTN framework can yield better results for both

the classifier architectures.

The TTN module consists of 3 FC layers with tanh nonlinearity and hidden states

of dimensions 16 and 16. The final FC layer produces a vector of length 50 (equal to

the input sequence length), with the first element set to zero (see Section 5.4).

The TCN architecture contains 1 temporal convolutional layer with 16, 32 or 64

feature maps, and 1 FC layer. We refer to these networks as TCN-16, TCN-32 and

TCN-64 respectively. We run the algorithm 5 times and report the mean and standard

deviation obtained in Table 5.2.
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The LSTM architecture is similar to the one proposed in [53] containing two layers

of LSTMs with a state dimension of 1024 and a dropout probability of 0.2. We use

momentum optimizer with a momentum of 0.9 for training.

The results obtained are shown in Table 5.2. In addition to our experiments,

we have reported results given in [53] for other important algorithms used for 3D

pose-based action recognition including JOULE-pose [69], Moving Pose [175], Hierar-

chical Recurrent Neural Networks (HBRNN) [44], Transition Forests (TF) [52], and

Lie Groups [159] and the Gram Matrix method [182], which also uses Dynamic Time

Warping for sequence alignment. Among the baseline neural networks, TCN-32 led

to the best results for this dataset, and addition of more layers did not yield better

performance. We observe that addition of the TTN consistently improves perfor-

mance over the baseline networks by at least 1% point (TCN-32) and up to 3.8 %

points (TCN-16). These results also suggest that the TTN can recover some lost

performance, when one reduces the number of parameters in the architecture. In the

case of the LSTM classifier, we observe an improvement of 2.25% points using TTN

+ LSTM over just the LSTM.

Introducing distortions in the data: As datasets are usually collected in lab

settings, there are relatively “clean” and do not contain many rate variations. Here,

we introduce artificial rate variations in the data in order to better illustrate the

usefulness of the TTN module. Here, we set the sequence length to 100 such that the

original sequences of length 50 range from t = 25 to 75, and the rest of the values are

set to zero. Now, we apply random “affine warps” to the training and test data. By an

affine warp, we mean a warping function of the form γ(t) = at+b, t = 25 to 75, which

is a linear time-scaling with an offset. We use a ∈ [0.75, 1.25] and b ∈ 0, 1, . . . , 49.

We observe that the induced distortion leads to a huge drop in performance of

TCN-32 from 81.74% to 70.43 %. With the TTN, the performance drop is much
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lower – from 82.75 to 78.26% and TTN+TCN-32 performs about 8% points higher

than TCN-32. Furthermore, from Figure 5.5, which shows the inputs, generated

warping functions and the TTN outputs, it can be readily observed that the TTN

performs class-aware alignment of the sequences which then makes the classification

problem much easier. This experiment shows that addition of the TTN enhances the

interpretability of the network, and also delivers superior performance when there are

larger rate variations are present in the data.

5.5.3 NTU RGB-D dataset

In this section, we conduct experiments on a large-scale dataset of human actions

called the NTU RGB-D dataset [142] which contains about 56000 sequences of 3D

skeleton positions acquired by a Microsoft Kinect. 25 joint locations are provided

for each skeleton. The dataset contains actions belonging to 60 human activities

performed by 45 subjects, with some actions containing two actors. The data are

acquired using a Microsoft Kinect. We sample 50 frames per sequence uniformly. We

conduct two sets of experiments for this dataset – Cross Subject (CS) and Cross View

(CV) – as per the protocol suggested by the authors in [142] using the same training

and testing splits.

We construct a TTN module with 2 temporal convolutional layers and 3 FC layers

with ReLU non-linearity. We use a filter size of 8 and 16 output feature maps in each

conv layer. The FC layers produce hidden representations of sizes 16, 16 and 50

respectively. The TTN module is trained with a learning rate that is one-tenth of the

learning rate for the parameters of the network.

We use the Temporal Convolution Network (TCN) described in [90]. The network

consists of 10 convolutional layers with batch normalization and ReLU non-linearity.
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Method Accuracy (%)

Moving Pose [175] 56.34

JOULE-pose [69] 74.60

HBRNN [44] 77.40

TF [52] 80.69

Lie Group [159] 82.69

Gram Matrix [182] 85.39

2-layer LSTM 76.17

2-layer LSTM + TTN 78.43

TCN-16 76.28 ± 0.29

TCN-16 + TTN 80.14 ± 0.33

TCN-64 79.10 ± 0.76

TCN-64 + TTN 81.32 ± 0.36

TCN-32 81.74 ± 0.27

TCN-32 + TTN 82.75 ± 0.31

TCN-32 (affine warp) 70.43

TCN-32 + TTN (affine warp) 78.26

Table 5.2: Action Recognition Results on the ICL Hand Action Dataset Showing

that LSTM+TTN and TCN+TTN Frameworks Consistently Outperform LSTM and

TCN Baselines.
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Method CS (%) CV (%)

Lie Groups [159] 50.08 52.76

FTP Dynamic Skeletons [69] 60.23 65.22

HBRNN [44] 59.07 63.97

2-layer LSTM [142] 60.69 67.29

2-layer part-LSTM [142] 62.93 70.27

STA-LSTM [146] 73.40 81.20

VA-LSTM [181] 79.40 87.60

STA-GCN [171] 81.50 88.30

TCN [90] 76.54 83.98

TCN + TTN 77.55 84.25

Table 5.3: Action Recognition Results on the NTU RGB-D Dataset Showing that

TCN+TTN Frameworks Outperforms the TCN.

While training, the TTN parameters are updated at one-tenth the learning rate of

the TCN.

The results obtained for this dataset are shown in Table 5.3. For cross-subject

experiments, we observe from the table that the addition of the TTN module results

in a performance improvement of about 1 percentage point over the baseline TCN.

We also found that by using 2 parallel TTNs and concatenating the TTN outputs

results in further improvement with a final performance of 77.80%. The addition of

the TTN module leads to lesser improvement in the case of cross-view experiment.

This can be explained by the fact there are likely fewer rate variations in the case of

cross-view protocol compared to cross-subject.
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Method w/o TTN (%) w/ TTN (%)

TCN (4 layers) 70.72 71.63

TCN (7 layers) 75.06 75.30

TCN (10 layers) 76.54 77.55

Table 5.4: Ablation results on the TCN for the NTU database. Cross-subject action

recognition results show that the TTN+TCN consistently performs better than TCN

for different sizes of TCN.

We study the effect of the number of layers in the classifier network on the perfor-

mance. The TCN architecture consists of 3 blocks of conv layers. We remove 1 block

at a time and compare the cross-subject classification rate. The results are shown in

Table 5.4. We see that the addition of the TTN produces better results in all cases.

5.6 Discussion and Future Work

In this work, we have proposed the Temporal Transformer Network (TTN) which

can be readily integrated into classification pipelines. TTN has the ability to gener-

ate rate-invariant as well as discriminative warping functions for general time-series

classification. We have shown improved classification results using different types of

classifiers – TCNs and LSTMs – on challenging 3D action recognition datasets ac-

quired using different modalities – Kinect and mocap. We have demonstrated the

rate-invariant and discriminative properties of the TTN.

In the future, we would like to apply the ideas presented in this chapter to video

action recognition. However, it is not immediately clear how to perform temporal

warping for videos as interpolation of video frames or their features may not cor-

respond to the true frame interpolation. One possible solution is jointly train the

image-level features and the action classification pipeline jointly along with the TTN
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module. Temporal transformers can also be applied in general time-series classifica-

tion which includes recognition from wearables, speech, etc. Unsupervised pattern

discovery with inbuilt warp-invariant metrics will be another interesting direction for

further research.

108



0 40 80 120 160

Frame index

0

40

80

120

160
F

ra
m

e 
in

de
x

Warping function

0 40 80 120 160

Frame index

-6

-5

-4

-3

-2

-1

0

1

2

3

4

V
al

ue

x
y
z

0 40 80 120 160

Frame index

-6

-5

-4

-3

-2

-1

0

1

2

3

4

V
al

ue

x
y
z

Figure 5.2: Top-left, Bottom-left: the trajectories and sampling points of the same

action (“wearing jacket”) before and after a time warping (Center). The trajectories

are visualized in R3 by using the sums of x, y, z coordinates of all joints. Notice how

the time series of x, y, z, which are the inputs of a neural network (Top-right and

Bottom-right), are quite different despite the action being the same. Here the action

is arbitrarily divided into 4 segments, shown in different colors, to highlight the rate

variation.
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Figure 5.3: Results on synthetic dataset 1. Rows 1 and 2 show waveforms corre-

sponding to classes 1 and 2 respectively. Columns 1 and 2 show the test inputs and

the TTN outputs respectively. It is clear by comparing these columns that the TTN

outputs are much better discriminated after warping. The TTN-predicted warping

functions also show that the TTN performs class-dependent warping. Column 3 is a

better visualization of column 2 after some post-processing (see text).
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Figure 5.4: Results on synthetic dataset 2. Rows 1 and 2 show waveforms correspond-

ing to classes 1 and 2 respectively. Columns 1, 2 and 3 show the clean waveforms,

test inputs(after random warping) and the TTN outputs respectively. It is clear by

comparing these columns that the TTN outputs are much more closely clustered

especially for class 2, showing that the TTN outputs are robust to rate-variations.

Column 4 is a better visualization of column 3 after some post-processing (see text).
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Figure 5.5: Visualizations of results of TCN-32 + TTN on ICL action dataset with

induced rate variations. In the left column are shown waveforms corresponding to

joint 1 of all test sequences. In the right column, 4 of those sequences are shown

for clarity. We see clearly that the generated warping functions undo the affine-warp

distortion in the test data, and the TTN outputs are nearly perfectly aligned leading

to much better classification results.
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Chapter 6

DEEP NON-LINEAR REGRESSION ON RIEMANNIAN MANIFOLDS

6.1 Introduction

Many applications in computer vision employ data that are naturally represented

on manifolds [115]. Shapes that are invariant to affine transforms [13] and linear dy-

namical systems [158] can be represented as points on the Grassmannian. In diffusion

tensor imaging, each ”pixel” of the ”image” is a symmetric positive definite (SPD)

matrix and the space of SPD matrices forms a manifold [135]. Lie groups like SO(3)

and SE(3) are used to represent human skeletons [159, 160]. Predicting probability

density functions is another area of interest, applicable to multi-class classification

and bag-of-words models [98], and saliency prediction [78].

Several years of research has presented us with various tools for statistics, and

thereby machine learning approaches to be deployed when the objects of interest

have manifold-valued domains (c.f. [151]). In deep learning, it is usually the case

that data samples are viewed as elements of vector spaces. Any additional struc-

ture that the data may possess is left to be learned through the training examples.

However, recently, there has been interest in employing deep learning techniques for

non-Euclidean inputs as well: [17] including graph-structured data [18, 65, 130] and

3D shapes viewed as Riemannian manifolds [118]. Also, deep networks that preserve

the input geometry at each layer have been studied for inference problems, e.g., for

symmetric positive definite matrices [70], Lie groups [71] and points on the Stiefel

manifold [72]. Another recent work considers weight matrices which are constrained

to be orthogonal, i.e., points of the Stiefel manifold, and propose a generalized version

113



of backpropagation [62]. These works do not consider output variables with geometric

constraints.

In contrast to the above, instead of enforcing geometry at the inputs, our goal is

to design a general framework to extend neural network architectures where output

variables (or deeper feature maps) lie on manifolds of known geometry, typically

due to certain invariance requirements. We do not assume the inputs themselves

have known geometric structure and employ standard back-propagation for training.

Equivalently, one may consider this approach as trying to estimate a mapping from

an input x ∈ RN to a manifold-valued point m ∈ M i.e., f : RN → M, using a

neural network, where m is the desired output.

That is, this chapter provides a framework for regression that is applicable to

predicting manifold-valued data and at the same time is able to leverage the power

of neural nets for feature learning, using standard backpropagation for unconstrained

optimization. In this chapter, we focus on two manifolds that are of wide inter-

est in computer vision – the hypersphere and the Grassmannian. We describe the

applications next.

Face → Illumination Subspace as regression on the Grassmannian: The il-

lumination subspace of a human face is a popular example from computer vision where

for a particular subject, the set of all face images of that subject under all illumina-

tion conditions can be shown to lie close to a low dimensional subspace [60]. These

illumination subspaces are represented as points on the Grassmannian (or Stiefel, de-

pending on application) manifold. Several applications such as robust face recognition

have been proposed using this approach. In this work, in order to demonstrate how

deep networks can be employed to map to Grassmannian-valued data, we consider the

problem of estimating the illumination subspace from a single input image of a sub-
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ject under unknown illumination. We refer to this application as Face→Illumination

Subspace (F2IS).

Multi-class classification as regression on the unit hypersphere: Classifica-

tion problems in deep learning use the softmax layer to map arbitrary vectors to the

space of probability distributions. However, more formally, probability distributions

can be easily mapped to the unit hypersphere, under a square-root parametrization

[147] inspired by the Fisher-Rao metric used in information geometry. Thus, multi-

class classfication can be posed as regression to a hypersphere. Indeed, there has

been work recently that consider spherical-loss functions which use the Euclidean

loss on unit-norm output vectors of a network [161, 38]. In this work, we propose

loss-functions for the classification problem based on the geometry of the sphere.

Main contributions: In this chapter, we address the training of neural networks

using standard backpropagation to output elements that lie on Riemannian manifolds.

To this end, we propose two frameworks in this chapter:

(1) We discuss how to map to simpler manifolds like the hypersphere directly us-

ing a combination of geodesic loss functions as well as differentiable constraint

satisfaction layers such as the normalization layer in the case of the hypersphere.

(2) We also propose a more general framework that is applicable to Riemannian

manifolds that may not have closed-form expressions for the geodesic distance

or when the constraints are hard to encode as a layer in the neural network.

In this framework, the network maps to the tangent space of the manifold and

then the exponential map is employed to find the desired point on the manifold.

115



We carry out experiments for the applications described above in order to evaluate the

proposed frameworks and show that geometry-aware frameworks result in improved

performance compared to baselines that do not take output geometry into account.

6.2 Related Work

We will now point to some related work that also examine the problem of predict-

ing outputs with geometric structure using neural networks. Byravan and Fox [19]

and Clark et al. [34] design deep networks to output SE(3) transformations. The

set of transformations SE(3) is a group which also possesses manifold structure, i.e.,

a Lie group. It is not straightforward to predict elements on SE(3) since it involves

predicting a matrix constrained to be orthogonal. Instead, the authors map to the

Lie algebra se(3) which is a linear space. We note that the Lie algebra is nothing but

the tangent space of SE(3) at the identity transformation and can be considered a

particular case of the general formulation presented in this chapter. Huang et al. [71]

use the logarithm map to map feature maps on SE(3) to se(3) before using regular

layers for action recognition. However, the logarithm map is implemented within the

network, since for SE(3), this function is simple and differentiable. In contrast, in this

work, we require the network output to be manifold-valued and thus do not impose

any geometry requirements at the input or for the feature maps. This also means

that a suitable loss function needs to be defined, taking into account, the structure

of the manifold of interest.

In a more traditional learning setting, there has been work using geodesic re-

gression, a generalization of linear regression, on Riemannian manifolds [51, 50, 143,

68, 89], where a geodesic curve is computed such that the average distance (on the

manifold) from the data points to the curve is minimized. This involves computing

gradients on the manifold. Recent work has also included non-linear regression on
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Riemannian manifolds [11, 10]. Here, the non-linearity is provided by a pre-defined

kernel function and the mapping algorithm solves an optimization problem iteratively.

Our work is a non-iterative deep-learning based approach to the problem described

in Banerjee et al. [11] as regression with the independent variable in RN and the

dependent variable lying on a manifold M. That is, unlike these works, the map-

ping f : RN → M in our case is a hierarchical non-linear function, learned directly

from data without any hand-crafted feature extraction, and the required mapping is

achieved by a simple feed forward pass through the trained network.

All neural nets in the chapter are trained and tested using Tensorflow [1], making

use of its automatic differentiation capability.

6.3 Two Approaches for Deep Manifold-Aware Prediction

We propose two ways of predicting manifold-valued data using neural networks

with standard backpropagation. See Figure 6.1 for visual illustration and important

notation.

Mapping to the manifold via geodesic-loss functions: In this case, the net-

work directly maps input vectors to elements on the manifold M and is required

to learn the manifold constraints from the data. If we represent the neural network

as a mapping NN, we have NN: RN → M. Firstly, unlike simple manifolds like the

sphere, manifolds in general do not have a differentiable closed-form expression, that

are also efficiently computable, for the geodesic distance function that can be used

as a loss function for the neural network. Although one can still resort to using a

differentiable loss function such as the Euclidean distance, this approach is not math-

ematically correct and does not yield the right estimate for distance on the manifold.

Secondly, the network output has to satisfy the manifold constraints. In the case of
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Method 1: 
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ᶕ
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Figure 6.1: This figure illustrates the two approaches presented in this chapter for training

neural networks to predict manifold-valued data. It also explains some basic concepts from

differential geometry visually. M is a manifold, TPM is the tangent space at p ∈ M. p is

called the pole of the tangent space. The curve connected p and q ∈M is the geodesic curve

γ. v is a point on TpM such that the exponential map expp(v) = γ(1) and the logarithm

map exp−1
p (q) = v.

the sphere, it is simple to enforce the unit-norm constraint at the output layer of the

neural network using a differentiable normalization layer. It is however less clear how

to map to more complicated manifolds such as the Stiefel and Grassmann manifolds

where the points are usually represented by tall-thin orthonormal matrices. That is,

in addition to the unit-norm constraints, orthogonality constraints between all pairs

of columns in the matrix need to be enforced. The Grassmann manifold, presents a

more difficult challenge, since each point in this space is an equivalence class of points

on the Stiefel manifold that are orthogonal transforms of each other. As we will see
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later, the data representation that respects this equivalence (projection matrix) does

not admit a feasible way for a neural network to map to this manifold directly.

Mapping via the tangent space – toward a general framework: This is a

more general formulation that is applicable to all the manifolds of interest. Here, the

network first maps to a vector on the tangent space constructed at a suitable pole

p ∈M, which forms the intermediate output. Once the network outputs the required

tangent, the exponential map (expp) is employed to find the corresponding point on

the manifold. Mathematically, we decompose the desired function f : RN → M

as f = expp ◦ NN and NN: RN → TpM. Intuitively, since the tangent space is a

vector space that encodes geometric constraints implicitly, it is attractive here, as

neural networks have been shown to be effective for estimating vector-valued data.

We note that an assumption is implicit in this framework: all the data points of

interest on the manifold are much closer to p than the cut-locus of the manifold and

in this case, the distance on the tangent space serves as a good approximation to the

geodesic distance. This is the same assumption that goes into currently successful

approaches for statistical computing methods on manifolds [135]. In practice, we find

this assumption is respected in our applications as well.

6.4 Deep Regression on the Grassmannian for F2IS

Face → Illumination Subspace: We will now describe an ill-posed inverse prob-

lem from computer vision that serves as our canonical application to illustrate predic-

tion on the Grassmann manifold using a neural network. It is well known that the set

of images of a human face in frontal pose under all illuminations lies close to a low-

dimensional subspace, known as the illumination subspace [60, 48]. If we compute

the eigenvectors of this set of images for different subjects using PCA, we observe
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that the top 5 principal components (PCs) capture nearly 90% of the variance. More

importantly, for this chapter, an obvious pattern can be observed between the subject

under consideration and the PCs of the illumination subspace. Firstly, the identity of

the subject can be easily determined from the PCs. Secondly, as noted by Hallinan

[60], we observe that the illumination patterns of top 5 principal components are the

same across subjects only up to certain permutations and sign flips. 1 Using the

terminology in [60], we can interpret the visualizations of the top 5 PC’s as a face

under the following respective illuminations: frontal lighting, side lighting, lighting

from above/below, extreme side lighting and lighting from a corner. The 1st and 2nd

PC’s have eigenvalues in a similar range and sometimes exchange places depending

on the subject. The 3rd PC, corresponding to eigenvalue is always at the same place.

The 4th and 5th PCs have eigenvalues in a similar range and can interchange places

for a few subjects.

The illumination subspace refers to the linear span of these eigenvectors, and is a

point on the Grassmannian. When we represent the subspace by its projec-

tion matrix representation, the representation becomes invariant to both

sign flips and permutations (in fact, invariant to the full set of right orthogonal

transforms).

In this chapter, as an example of predicting points on Grassmann manifold, we

define the following ill-posed inverse problem: given a human face in frontal pose

under an unknown illumination, output the corresponding illumination subspace. We

will refer to this problem as the ”Face → Illumination Subspace” problem or F2IS.

In our expts., we consider the illumination subspace to be of dimension d = 3, 4,or 5.

1It is clear that for an eigenvector e, −e is also an eigenvector.
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Geometry of the Grassmannian: The Grassmann manifold, denoted by Gn,d, is

a matrix manifold and is the set of d-dimensional subspaces in Rn. To represent a

point on Gn,d, we can use an orthonormal matrix, U ∈ Rn×d (UTU = In), to represent

the equivalence class of points in Rn×d, such that, two points are equivalent if their

columns span the same d-dimensional subspace. That is, Gn,d = {[U]}, where [U] =

{UQ|UTU = I,Q is orthogonal}. In order to uniquely represent the equivalence

class [U] ∈ Gn,d, we use its projection matrix representation P = UUT ∈ Rn×n,

where U is some point in the equivalence class. UUT contains n(n+1)
2

unique entries

as it is a symmetric matrix. Clearly, for any other point in the same equivalence class

UQ, its projection matrix representation is (UQ)(UQ)T = UUT , as required. Thus,

the space of all rank d projection matrices of size n×n, Pn is diffeomorphic

to Gn,d. The identity element of Pn is given by IPn = diag(Id,0n−d), where 0n−d

is the matrix of zeros of size (n − d) × (n − d). In order to find the exponential

and logarithm maps for Gn,d, we will view Gn,d as a quotient space of the orthogonal

group, Gn,d = On/(On−d ×Od). The Riemannian metric in this case is the standard

inner product [46] and thus, the distance function induced on the tangent space is the

Euclidean distance function. Using this formulation, given any point P = UUT ∈ Pn,

a geodesic of Pn at IPn passing through P at t = 0, is a particular geodesic α(t) ofO(n)

completely specified by a skew-symmetric X ∈ Rn×n: α(t) = expm(tX)IP expm(−tX),

where expm(.) is the matrix exponential and P = α(1), such that X belongs to the set

M given by M =

{ 0d A

−AT 0n−d

 | A ∈ Rd×(n−d)

}
. X serves as the tangent vector

to Gn,d at the identity and is completely determined by A. The geodesic between two

points P1,P2 ∈ Pn, is computed by rotating P1 and P2 to IPn and some P ∈ Pn

respectively. The exponential map, takes as inputs, the pole and the tangent vector

and returns the subspace span(U), represented by some point UQ. Refer Srivastava
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and Klassen [148] and Taheri et al. [153] for algorithms to compute exponential and

log maps for the Grassmannian.

Synthetic dataset for F2IS: We use the Basel Face Model dataset [134] in order

to generate 250 random 3D models of human faces {Si}, i = 1 . . . 250 (200 for training

and 50 for testing chosen randomly). 2 We then generate a set of 64 faces for each

subject where each face is obtained by varying the direction of the point source

illumination for the frontal pose i.e., Si = {Fj
i}, j = 1 . . . 64. The directions of

illumination are the same as the ones used in the Extended Yale Face Database B

[54]. Each face image is converted to grayscale and resized to 28× 28. Once we have

the 250 sets of faces under the 64 illumination conditions, we calculate the illumination

subspace for each subject as follows. For each subject, we first subtract the mean

face image of that subject under all illumination conditions and then calculate the

principal components (PCs). For a subject i and an illumination condition j, we will

denote the input face image by Fj
i and the desired d top PCs by E1

i ,E
2
i , . . . ,E

d
i (note

that the PCs do not depend on the input illumination condition). It is clear that

every Ek
i , k = 1, 2, . . . , d is of size 28× 28 and 〈Ek

i ,E
l
i〉 = 1, if k = l and 0 otherwise.

If we lexicographically order each Ek
i to form a vector vec(Ek

i ) of size 784×1 and for

each subject, arrange the Ek
i ’s to form a matrix Ui = [vec(E1

i ) vec(E
2
i ) . . . vec(E

d
i )],

then the orthonormality constraint can be rewritten as UT
i Ui = Id, where Id is the

identity matrix of size d× d. As we argued earlier, due to the nature of the problem,

Ui should be represented as a point on the Grassmann G784,d using the projection

matrix representation. With this notation, the desired mapping is f : R28×28 → G784,d

such that f(Fj
i ) = UiQ ∈ [Ui], the required equivalence class or equivalently, UiU

T
i .

2We use a synthetic dataset because we were unable to find any large publicly available real
database that would enable training of neural networks without overfitting.
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For the inputs Fj
i during training and testing, we do not use all the illumination

directions (j′s). We only use illumination directions that light at least half of the face.

This is because for extreme illumination directions, most of the image is unlit and

does not contain information about the identity of the subject, which is an important

factor for determining the output subspaces. We select the same 33 illumination

directions for all subjects to form the inputs for the network. We randomly split the

dataset into 200 subjects for training and 50 subjects for testing. Therefore there

are 33 × 200 = 6600 and 33 × 50 = 1650 different input-output pairs for training

and testing respectively. The 33 illumination directions used for creating inputs for

both the training and test sets are a subset of the illumination directions used in the

Extended Yale Face Database B [54].

6.4.1 Proposed frameworks for solving F2IS

We propose two frameworks which employ networks with nearly the same archi-

tecture: The network consists of 3 conv layers and two fc layers. ReLU non-linearity

is employed. Each conv layer produces 16 feature maps. All the filters in the conv

layers are of size 11 × 11. The first fc layer produces a vector of size 512. Size

of the second fc layer depends on the framework. Both networks are trained using

the Adam optimizer [92] using a learning rate of 10−3 for 50000 iterations with a

mini-batch size of 30. Euclidean loss between the desired output and ground truth

is employed in both cases. We show that the choice of representation of the desired

output is crucial in this application. We carry out three sets of experiments using

subspace dimension d = 3, 4 and 5.

Baseline: The first framework is a baseline that attempts to directly map to the

desired PCs represented as a matrix Ui, given Fj
i , i.e., NN(Fj

i ) = Ui. We use the
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Euclidean loss function between the ground-truth Ui and the network output Ûi for

training: Lb = ||Ui− Ûi||2F That is, instead of regressing to the desired subspace, the

network attempts to map to its basis vectors (PCs). However, the mapping from Fj
i to

Ui is consistent across subjects only up to certain permutations and sign flips

in the PCs. Hence, without correcting these inconsistencies ad hoc, the problem

is rendered too complicated, since during the training phase, the network receives

conflicting ground-truth vectors depending on the subject. Thus, this framework

performs poorly as expected. It is important to note that mapping to the correct

representation UUT (which respects Grassmann geometry and is invariant to these

inconsistencies) directly is not feasible because the size of UUT is too large (784×785
2

)

and has rank constraints. This necessitates mapping via the tangent space which is

discussed next.

Mapping via the Grassmann tangent space – GrassmannNet-TS: The sec-

ond framework represents the output subspaces as points on the Grassmann manifold

and first maps to the Grassmann tangent space and then computes the required sub-

space using the Grassmann exponential map. This circumvents the problem of very

large dimensionality encountered in the first approach since the tangent vector has

a much smaller intrinsic dimensionality. This representation has a one-to-one map-

ping with the projection matrix representation and thus, is naturally invariant to

the permutations of the PCs and all combinations of sign flips present in the data.

And the mapping we intend to learn becomes feasible in a data-driven framework.

Mathematically, NN: R784×d → TpG784,d.

As shown in Section 6.4, a tangent at some pole p is given by the matrix X, which

in turn is completely specified by the matrix A ∈ R(784−d)×d, a much smaller matrix.

Therefore, we design a network to map an input face Fj
i to the desired matrix Ai.

124



Input Ground-truth PCs Output of baseline n/w Output of GrassmannNet-TS

DG = 1.6694 DG = 0.7006

DG = 1.2998 DG = 0.7238

DG = 0.7797 DG = 0.5966

DG = 1.5355 DG = 0.6170

DG = 1.6760 DG = 0.4420

DG = 1.6703 DG = 0.4939

Table 6.1: Test results for two input images using d = 5. We can clearly observe that

the GrassmannNet-TS (with pole Ud
Fr) framework performs much better than the

baseline that attempts to regress directly to the PCs. The numbers below the output

images indicate the subspace distance from the ground truth (lower the better). Note

that the outputs need not be exactly the same as the groundtruth PCs since the

quantity of interest is the subspace spanned by the groundtruth PCs.
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Input Ground-truth PCs Output of baseline n/w Output of GrassmannNet-TS

DG = 1.9400 DG = 0.5489

DG = 1.2735 DG = 0.6245

DG = 0.6750 DG = 1.1580

DG = 1.2047 DG = 0.6674

DG = 0.6225 DG = 0.3653

DG = 1.5900 DG = 0.9339

Table 6.2: Test results for two input images using d = 4. As in the case of d =

5, GrassmannNet-TS (with pole Ud
Fr) framework performs much better than the

baseline that attempts to regress the PCs directly.
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Input Ground truth PC’s Output of baseline n/w Output of GrassmannNet-TS

DG = 0.5766 DG = 0.4854

DG = 0.7095 DG = 0.4787

DG = 0.4429 DG = 0.4009

DG = 1.0904 DG = 0.3042

DG = 0.9012 DG = 0.3118

DG = 0.9244 DG = 0.3294

Table 6.3: Test results for six input images using d = 3. From the figures, we can

clearly observe that the GrassmannNet-TS (with the Fréchet mean of the training

set as the pole) framework performs much better than the baseline that attempts to

regress the PCs directly. The numbers below the output images indicate the subspace

distance from the ground truth (lower the better).

.
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An training pair can be represented as (Fj
i ,Ai) and the let the output of the network

be the vectorized version of a matrix Âi ∈ R(784−d)×d. The Ai’s are computed using

the Grassmann logarithm map in [148]. We also note that A does not possess any

additional structure to be enforced and thus a neural network can be easily trained to

map to this space using just the Euclidean loss between Ai and the network output

Âi: LG = ||Ai − Âi||2F .

Pole of tangent space: This is a design choice and we conduct experiments

with two different poles:

(1) We compute the the illumination subspace of the entire training set. We will

denote these PCs by Ek
Tr, k = 1, 2, . . . , d and the corresponding matrix repre-

sentation by Ud
Tr, which forms the pole of the Grassmann tangent space.

(2) It is common practice to use the Fréchet (also known as geometric or Karcher)

mean as the pole of the tangent space. We compute the Fréchet mean of the

ground-truth subspaces of the training set using the iterative algorithm given

by Turaga et al. [158]. We denote this pole as Ud
Fr.

During the testing phase, using the output Â matrix, we employ the exponential

map for a given pole to find the corresponding point on the Grassmann manifold.

This framework of first mapping to the Grassmann tangent space using a network

and then to the corresponding subspace using the Grassmann exponential map is

referred to as GrassmannNet-TS.

6.4.2 Experimental Results for F2IS

For the frameworks described in Sections 6.4.1, we describe the results on the

test set of F2IS here. We compute the distance between predicted and ground-truth

subspace as the measure to quantify the efficacy of the proposed frameworks. Various
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Subspace

Dim d
Baseline

GrassmannNet-TS

Pole = Ud
Tr Pole = Ud

Fr

3 0.6613 0.3991 0.3953

4 1.0997 0.5489 0.5913

5 1.4558 0.8694 0.6174

Table 6.4: Mean geodesic distance between predictions and ground-truth on the test

set using the proposed frameworks. GrassmannNet-TS expectedly provides excellent

results compared to the baseline framework for all subspace dimensions. Note that

the max DG(.) possible for d = 3, 4 and 5 are 2.72, 3.14 and 3.51 respectively

measures exist that quantify this notion based on principal angles between subspaces

[61]. We use the Grassmann geodesic distance. For two subspaces represented by U1

and U2 ∈ Gn,d, the geodesic distance is given by DG(U1,U2) =

(∑d
i=1 θ

2
i

)1/2

, where

θi’s are the principal angles obtained by the SVD of UT
1 U2 = W(cos Θ)VT, where

cos Θ = diag(cos θ1, . . . , cos θd). We use the implementation in [94] for computing

the principal angles. We report the arithmetic mean of this distance measure for the

entire test set. Note that the maximum value of DG(.) is π
√
d

2
.

The results based on the mean subspace distance on the test set for the proposed

frameworks for different values of the subspace dimension d are presented in Table 6.4.

The baseline, as expected, performs poorly. This is because during the training phase,

the network received conflicting ground-truth information because of the permutation

and sign flips inherently present in the data. On the other hand, GrassmannNet-TS

yields excellent performance as it is invariant to these transformations by design. We

reiterate that this is possible only in the case of regression directly on the Grassmann

tangent space since mapping to the Grassmann manifold is infeasible because of the
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very large number of variables required to represent the projection matrix. The

outputs of the baseline as well as GrassmannNet-TS using the Fréchet mean as the

pole are also presented visually in Tables 6.1 and 6.2 for two test images for d = 4, 5

respectively, and show similar trends. The choice of the pole does not seem to affect

the results significantly except in the case of d = 5 where the Fréchet mean performs

better.

6.5 Deep Regression on the Unit Hypersphere for Multi-Class Classification

Reformulating classification as mapping to the unit hypersphere: For multi-

class classification problems, deep networks usually output a probability distribution,

where one uses the mode of the distribution to predict the class label. What en-

sures that the output elements form a probability distribution is the ”softmax layer”.

However, by using a square-root parametrization – replacing each element in the dis-

tribution by its square-root – we can map a probability distribution to a point on the

non-negative orthant of a unit hypersphere SC , where C is now the number of classes.

The square-root parameterization reduces the complicated Riemannian metric on the

space of probability density functions, the Fisher-Rao metric, to the simpler Eu-

clidean inner product on the tangent space of the unit hypersphere with closed form

expressions for the geodesic distance, exponential and logarithm maps [147]. In this

work, equipped with the knowledge of differential geometry of the sphere, we pro-

pose different loss functions for the tackling the classification problem. We consider

two main variants – learning a network to map to the sphere directly or map to its

tangent space. We note that the constraint for a point to be on a sphere or to be a

probability distribution is simple and can be easily satisfied by using an appropriate

normalization (dividing by its 2-norm or using softmax). However, mapping to the
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tangent space of the sphere provides a novel perspective to the same problem and is

more general since as we showed earlier, it is necessary for the Grassmannian.

Consider a classification problem with C classes. For a given input vector x, let the

ground-truth probability distribution over the class labels be cpd. The corresponding

point on SC is given by cS, such that cS(i) =
√

cpd(i), i = 1 . . . C. The pole uS for

constructing the tangent space TuS
SC is chosen to be the point on SC corresponding

to the uniform distribution upd,upd(i) = 1
C
, i = 1 . . . C. Let ξ be the desired point on

TuS
SC for the input x and is given by output of the log map ξ = exp−1

uS
(cS). Let the

output of the last fully connected layer be denoted by ô.

Geometry of the unit hypersphere [3]: The the n-dimensional unit sphere de-

noted as Sn and is defined as Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1|
∑n+1

i=1 x
2
i = 1}.

Given any two points x,y ∈ Sn, the geodesic distance between x and y is calculated

using d(x,y) = cos−1〈x,y〉. For a given point x ∈ Sn, the tangent space of Sn at

x is given by TxSn = {ξ ∈ Rn| xT ξ = 0}. Since the Riemannian metric (the inner

product on the tangent space) is the usual Euclidean inner product, the distance func-

tion on the tangent space induced by this inner product is the Euclidean distance.

The exponential map exp : TxSn → Sn is computed using the following formula:

expx ξ = cos(||ξ||)x + sin(||ξ||) ξ
||ξ|| , where ξ ∈ TxSn. For x,y ∈ Sn, the inverse expo-

nential map exp−1 : Sn → TxSn is given by exp−1
x (y) = d(x,y)

||Px(y−x)||Px(y− x). Px(v) is

the projection of a vector v ∈ Rn onto TxSn, given by Px(v) = (In−xxT )v, In is the

n× n identity matrix.

6.5.1 Mapping to the Hypersphere Directly: SNet-M

In this case, the network directly outputs points on the sphere and a training

pair is represented as (x, cS). We call this framework Snet-M. At test time, the
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Framework
Desired Output of

Network Lies on
Loss Function

Test Accuracy

on MNIST (%)

Test Accuracy

on CIFAR-10 (%)

Baseline Cross Entropy 99.224 (0.0306) 78.685 (0.3493)

SNet-M SC
LSeuc 99.263 (0.0479) 79.738 (0.4009)

LSgeo 99.293 (0.0343) 80.024 (0.5131)

SNet-TS TuS
SC

LTeuc 99.293 (0.0691) 77.548 (0.5620)

LTorth 99.279 (0.0448) 77.708 (0.3517)

LTproj 99.332 (0.0600) 76.047 (1.6225)

Table 6.5: Avg test accuracy (std. dev.) over 10 runs using different loss functions

on SC and TuS
SC , compared to the cross entropy loss.

network outputs a point on the sphere and the corresponding probability distribution

is computed by squaring the elements of the output. We propose the following loss

functions on the sphere. While training, the loss is averaged over the entire batch. In

this case, we also employ a normalizing layer as the last layer of the network which

guarantees that ô lies on SC .

(1) Euclidean loss on SC : This simply measures the Euclidean distance between

two points on a sphere and does not take into account the non-linear nature of

the manifold: LSeuc = ||cS − ô
||ô||2 ||

2
2.

(2) Geodesic loss on SC : The “true” distance between the two points on the

sphere is given by θ = cos−1〈cS, ô
||ô||2 〉. Since minimizing this function directly

leads to numerical difficulties, we instead minimize its surrogate, LSgeo = 1 −

cos θ.
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6.5.2 Mapping to the Hypersphere via its Tangent Space: SNet-TS

Here, given an input, the algorithm first produces an intermediate output on

TuS
SC and then the exponential map is used to compute the desired point on SC . The

corresponding probability distribution is computed by simply squaring each element

of the vector. We refer to this framework as SNet-TS. A training example, then, is of

the form (x, ξ), where ξ is the desired tangent vector. We propose the following loss

functions on TuS
SC .

(1) Euclidean loss on TuS
SC : Measures the Euclidean distance between two

points on the tangent space of the sphere : LTeuc = ||ξ − ô||22. The output,

ô, is however not guaranteed to lie on TuS
SC since a point on TuS

SC needs to

satisfy the constraint xT ξ = 0. Therefore, we first project ô to the TuS
SC and

then use the exponential map.

(2) Euclidean + Orthogonal loss on TuS
SC : In order to improve the ”tangent-

ness” of the output vector, we add the inner product loss that encourages the

orthogonality of the output vector relative to the pole, which is the tangent

space constraint: LTorth = ||ξ − ô||22 + λ(ôTuS)2.

(3) Projection loss on TuS
SC : Since a closed form expression exists to project

an arbitrary vector onto TuS
SC , we implement the projection layer as the last

layer that guarantees that the output of the projection layer lies on TuS
SC .

We compute the Euclidean loss between the projected vector and the desired

tangent: LTproj = ||cS − PuS
ô||22.
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6.5.3 Experiments on Image Classification

Image classification problem is a widely studied problem in computer vision and

will serve as an example to demonstrate training a network to map to points on a

unit hypersphere and its tangent space. We now describe the experiments conducted

using MNIST and CIFAR-10 datasets. We train 6 networks with different loss func-

tions. The first network is a baseline using the softmax layer to output a probability

distribution directly and employs the well-known cross-entropy loss. The next two

networks use the SNet-M framework and LSeuc and LSgeo as the loss functions. The

desired outputs in this case lie on SC and the network employs a normalizing layer at

the end in order force the output vector to lie on the SC . The ground-truth output

vectors are obtained by using the square-root parametrization. The final 3 networks

employ the SNet-TS framework and LTeuc , LTorth and LTproj as the loss functions. The

desired output vector, in this case, should lie on TuS
SC . The required logarithm and

exponential maps are computed using the Manifold Optimization toolbox [16]. We

note that the purpose of the experiments is to show that for some chosen network

architecture, the proposed loss functions that are inspired by the geometry of the

hypersphere, perform comparably with the cross-entropy loss function.

MNIST: The MNIST dataset [101] consists a total of 60000 images of hand-written

digits (0-9). Each image is of size 28× 28 and is in grayscale. The task is to classify

each image into one of the 10 classes (0-9). The dataset is split into training and test-

ing sets with 50000 and 10000 images respectively. We use the LeNet-5 architecture as

the neural network [101]. The network consists of 2 convolutional and max-pooling

(conv) layers followed by 2 fully-connected (fc) layers. ReLU non-linearity is em-

ployed. The filters are of size 5 × 5. The first and second conv layers produce 32

and 64 feature maps respectively. The first and second fc layers output 1024 and 10
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elements respectively. The networks are trained for 50000 iterations with a batch size

of 100 using Adam optimizer [92] with learning rate of 10−3.

CIFAR-10: The CIFAR-10 dataset [95] consists a total of 60000 RGB natural

images. Each image is of size 32 × 32. The task is to classify each image into

one of the 10 classes (Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship,

Truck). The dataset is split into training and testing sets with 50000 and 10000

images respectively. The network consists of 2 conv layers with max-pooling and

local response normalization followed by 2 fc layers. ReLU non-linearity is employed.

Each input image is mean subtracted and divided by its standard deviation. Data

augmentation using 10 24× 24 random crops per input image is employed to reduce

overfitting. At test time, the central 24×24 region is used as the input to the network,

after performing the same normalization as the training inputs. The networks are

trained for 500000 iterations with a batch size of 100 using Adam optimizer with

learning rate of 10−3.

For each dataset, we fix the network architecture and train the 6 versions of the

network with different loss function as described above. We use λ = 1 for LTorth .

The image recognition accuracies obtained on the test set (averaged over 10 runs) are

shown in Table 6.5.

The results indeed show that some of the proposed loss functions tend to perform

better than cross entropy. For both datasets and especially CIFAR-10, SNet-M yields

better performance than cross entropy and within this framework, geodesic loss per-

forms better compared to Euclidean loss. SNet-TS shows improvements in accuracy

in the case of MNIST, albeit with higher variance in the accuracy.
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6.6 Conclusion

In this chapter, we have studied the problem of learning invariant representa-

tions, which are at the heart of many computer vision problems, where invariance to

physical factors such as illumination, pose, etc often lead to representations with non-

Euclidean geometric properties. We have shown how deep learning architectures can

be effectively extended to such non-linear target domains, exploiting the knowledge

of data geometry. Through two specific examples – predicting illumination invari-

ant representations which lie on the Grassmannian, and multi-class classification by

mapping to a scale-invariant unit hypersphere representation – we have demonstrated

how the power of deep networks can be leveraged and enhanced by making informed

choices about the loss function while also enforcing the required output geometric

constraints exactly. Extensions to other geometrically constrained representations,

such as symmetric positive-definite matrices are evident. On the theoretical side,

extending the current framework to applications where data points may have wider

spread from their centroid, and to non-differentiable manifolds which arise in vision

remain interesting avenues for the future.
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Chapter 7

DISCUSSION AND FUTURE WORK

In this dissertation, I have presented several contributions in computer vision and

computational imaging which employ deep neural networks. I have demonstrated how

we can build invariant/robust representations, efficient and more interpretable archi-

tectures through enforcing different types of constraints on latent representations, pa-

rameters and design of neural network-based algorithms. These modifications come

with significant improvements in performance such as image reconstruction quality

in the case of computational imaging applications, and recognition accuracies in the

case of higher-level computer vision applications considered in this disseration.

Specifically, I described how to use deep learning for two important computational

imaging applications – (1) compressive sensing where we want to solve reconstruct an

image from a small set of linear measurements of the scene. I first show how we can use

a convolutional neural network, ReconNet, to significantly improve over traditional

optimization-based methods which use hand-crafted priors or simple linear-models

(such as dictionary learning), and further enhance reconstruction quality by jointly

learning the measurement matrix along with the reconstruction network. Then, I

described how we can make simple modifications to the loss function and training al-

gorithm in order to incorporate interesting constraints on the measurement operator

that makes the algorithm more efficient. (2) multi-spectral image fusion where given

a high resolution panchromatic image a set of low resolution multispectal images, we

want to fuse the two modes of information together to create a set of high resolution

multispectral images. In this case, I show how we can design a more interpretable neu-
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ral network-based architecture inspired by earlier signal processing literature, which

leads to significant improvements in final multi-spectral fusion quality.

I have also carefully demonstrated how the addition of special layers and con-

strained representations can encode required invariances for high-level inference ap-

plications in computer vision. In particular, I have designed Temporal Transformers

for human skeletal action recognition which is designed to generate easily interpretable

rate-invariant and discriminative warping functions in a template-free manner such

that, when applied to the input signal aids in improving classification performance.

Finally, I showed how to use a learning framework to create illumination invariants

from a single images. Unlike the traditional approach which requires access to images

under all illumination conditions and a subspace fitting through optimization, I pose

the problem as a non-linear regression on the Grassmannian. I design manifold-aware

loss functions which respect the geometry of the underlying space and produces signif-

icantly better illumination subspaces from a single image, compared to conventional

Euclidean frameworks.

This dissertation also opens up many interesting avenues for future research which

I discuss below.

7.1 Aligning Trajectories on Manifolds Using Neural Networks

In Chapter 5, I presented Temporal Transformer Networks which are trained to

perform template-free alignment of time-series signals in order to maximize classifica-

tion accuracy. Instead, we can build a Siamese architecture which takes in two time

series signals and generates a warping function at the output. This network can be

trained in a completely unsupervised fashion by employing the warping layer designed

in Chapter 5 and by using an alignment loss function between signal 1 and the warped

version of signal 2. Once trained, time series alignment of similar test sequences can
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be performed by a simple feed-forward pass through the network, rather than solv-

ing a computationally more expensive dynamic programming algorithm, which is the

conventional method.

This idea can be readily extended from trajectories in RN to trajectories on man-

ifolds. This is directly applicable to human action recognition from skeletal data in

the following way. Using 3D joint locations, the sequences can be seen as trajec-

tories on RJ×3, where J is the number of joints. If we use relative pairs of SE(3)

transformation matrices between pairs of joints, such as in the paper by Raviteja et

al. [159], as the representation of the skeleton, then the sequence becomes a tra-

jectory on the product manifold of SE(3) × SE(3) × · · · × SE(3). Once we have

these trajectories, we can use the framework presented by Anirudh et al. [9] for

action recognition. This involves, as the first step converting the sequences to the

Square-Root Velocity Framework (SRVF) representation for Euclidean trajectories,

and Transport SRVF (TSRVF) representation for non-Euclidean trajectories. Then,

the sequences are aligned with the “mean” sequence of the training dataset, followed

by feature extraction and classification.

The alignment is performed using an algorithm based on dynamic programming.

Instead, we can envision training a neural network to perform the alignment to the

mean sequence using simple feed-forward operation. Due to the fact that the eventual

goal is action recognition, it is likely that the alignment need not be perfect and can

be approximate, while maintaining the same classification performance.

7.2 Extensions to Deep Non-Linear Regression onto Riemannian Manifolds

In Chapter 6, non-linear regression on the Grassmannian and the unit-hypersphere

were presented. On similar lines, I plan to extend the ideas to the manifold of

symmetric positive definite matrices (SPD). This manifold is of significance in the
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medical imaging community in the context of Diffusion Tensor Imaging (DTI), where

the acquired “image” is a 2D field of 3 × 3 SPD matrices [135]. Operations such as

denoising and super-resolution DT images can be posed as regression on the product

space of SPD matrices.

In Chapter 6, for regression onto complicated manifolds like the Grassmann and

Stiefel, we resort to first regressing the tangent vector and then mapping it to the

corresponding point on the manifold. This formulation, although effective in the cases

presented, assumes that the data are concentrated on a small part of the manifold

such that the tangent space approximation is valid. In cases where this assumption

may not hold, I propose investigating the possibility of regressing directly on the

manifold by employing matrix back-propagation and retraction map (which can be

implemented as a differentiable layer) instead of the standard back-propagation and

the exponential map.

7.3 Enforcing Multiple Invariances Simultaneously in Neural Network Frameworks:

Deep Learning in Shape Spaces

In chapters 4 and 5, I designed methods to encode certain geometric invariances

into deep neural networks for create rate-invariant representaions for human skeletal

actions and illumination-invariant representations for faces. However, in most ap-

plications, we would like to build multiple such invariances into deep architectures.

Two relevant and interesting examples are that of shape clustering and classification

[150], which are important problems in many applications in life sciences. We start

of by first representing shapes are closed curves in R2. Shapes however are invariant

to the following transformations: translation, scale and rotation. Once the curve is

discretized for processing on a computer, we need an extra invariance to the sam-

pled points on the curve. Formally, if we denote the space of curves by C, then the

140



space of shapes S is the quotient space given by C/(Γ×SO(2)), where Γ is the set of

resampling functions and SO(2) is the 2D rotation group. In order to achieve both

sets of invariances, we can jointly employ a spatial transformer layer [77] for learn-

ing invariances to spatial transformations and another warping layer for resampling

invariance which is very similar to the Temporal Transformer [111], thus building

two sets of invariances into the same neural network. As these warping layers are

differentiable, they can be incorporated readily at the front-end of classification and

clustering networks.
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