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Abstract

Motion capture (mocap) and time-of-flight based sens-
ing of human actions are becoming increasingly popular
modalities to perform robust activity recognition. However,
because of several nuisance factors such as occlusions, it
may not be possible to record the movements of all joint
locations, which makes it difficult to integrate it with down-
stream tasks like action classification easily. In this paper,
we first pose the problem of reconstructing joint dynamics
as an ill-posed linear inverse problem. We then propose a
method based on deep generative priors to perform the re-
construction. Then, given an action with unseen joints, we
complete the action by projecting it onto the manifold of hu-
man actions by optimizing the latent space representation.
Experiments on both mocap and Kinect datasets clearly
demonstrate that the proposed method performs very well
in recovering semantics of the actions and dynamics of un-
seen joints. We will release all the code and models publicly.

1. Introduction

With the proliferation of low-cost sensing devices, se-
quential data has become ubiquitous in applications such
as action and gesture recognition, health trackers, heart rate
monitoring etc. In many of these applications, the essential
task at hand is inferring abstract, high-level semantic quan-
tities such as health of the patient, quality of movement,
intended gestures etc. These quantities depend on the un-
derlying dynamical process or system that is generating the
time-series. Accurately estimating the dynamical process is
non-trivial and would require us to completely observe the
system, due to large degrees of freedom and complex inter-
actions between sensors and humans. Traditionally, this has

restricted us to using certain features of the dynamical pro-
cess that can still be determined from partial observations
[30], for e.g. estimating the dynamics of human movement
from a few skeletal joint sequences [29]. However, more
recently, with the availability of large datasets, and highly
parameterized predictive models, we are able to implic-
itly learn the dynamics much better, leading to significantly
higher performance on several benchmarks [35, 31, 26].

In this paper, we are interested in restoring dynamics of
such sequential data when several of the dimensions are
missing, particularly at test time. This can occur due to
several factors, for e.g., identifiability issues, faulty sensors,
occlusions and other environmental nuisance factors. While
classical topological features may be used here, they tend to
be simplistic and not predictive enough on complex datasets
[3, 29]. On the other hand, conventional deep learning
methods fail due to the unaccounted distribution shift be-
tween training and testing data sets, and also because when
the joints are missing a lot of information regarding the dy-
namics is lost. Instead we pose this as a linear inverse prob-
lem that can be solved at test time, with great accuracy. We
focus particularly on the problem missing joints in skeletal
action recognition.

In skeletal action recognition, sensors such as motion
capture (mocap), and Microsoft Kinect can directly provide
approximate joint or body-part locations directly instead of
standard RGB frames. These relatively novel modalities
have the advantage over RGB data in that both the data and
the corresponding neural network architectures are much
smaller and require less memory and compute. Effective
action recognition can be performed on these data directly
without access to RGB frames [28, 36, 12, 35, 31, 26].
However, depth-based sensing using a device like Kinect
may not be optimal when all the joints are not visible to the
camera. In order to be effective, the entire body needs to be
visible to the camera, and should be in relatively ‘normal’
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Figure 1: Block diagram illustrating the process of reconstructing dynamics of unseen joints by projecting to the range
space of a generative model. In this paper, we use a temporal convolutional autoencoder as the generative model. Given
a test sequence with only a subset of joints observed, we get an initial estimate of the reconstruction using the encoder
representation for the test sequence z(0). Then, we optimize over the encoder representation space in order to minimize the
distance between the output of the decoder and the given test sequence, as shown. This procedure greatly improves the final
reconstructed sequence.

poses. Not only is this assumption restrictive in general,
but it becomes a very significant barrier in special situa-
tions such as those involving home-based physical therapy
interventions, art performance, or emerging augmentations
based on physical activity tracking in workplaces, where
occlusions occur due common daily objects such as tables,
chairs, etc. While these issues can be resolved with accurate
mocap, it requires an expensive setup with a large number
of cameras. Employing fewer cameras would be inexpen-
sive, but can result in several occluded joints. Moreover, it
is not clear which set of joints will be occluded, and can de-
pend on the type of action being performed, as well as the
subject position and the action trajectory.

In this paper, we focus on the problem of reconstructing
unseen joint dynamics for 3D human action sequences at
test-time. Given a human skeletal action sequence with a
fraction of joints missing throughout the action, can we re-
construct the dynamics of those unseen joints and use the re-
sulting completed action for action recognition without any
modifications to the classification architectures? We answer
the question affirmatively.
Contributions:

1. We show that it is possible to effectively recover se-
mantics and dynamics about human actions while hav-
ing access to as few as 50% of the joints during both
training and testing.

2. We pose it as an ill-posed linear inverse problem on the
space of actions, and solve it by imposing a dynamical
prior using a pre-trained generative model. The so-
lution to the inverse problem is achieved by approxi-
mately projecting the incomplete action onto the range
of this generative model, as shown in Figure 1.

3. The proposed method is a test-time approach that can
easily handle changes in the kind of missing joints di-
rectly at test time. We demonstrate its effectiveness us-
ing real world mocap and Kinect datasets. We validate
that the reconstructions recover information about the
semantics and dynamics of the actions and show that
in most cases the recovered actions perform within 5%
of original ground truth data.

2. Related work
In this section, we describe closely related work which

we put into three categories.

2.1. 3D human action acquisition and completion

The two most common methods of capturing 3D human
skeletal actions are using motion capture (mocap) systems,
and using depth-sensing cameras like Kinect and RealSense
and then using a algorithm to estimate the joint locations.
However, both these methods suffer from drawbacks. Not
all joints may be recorded mainly due to occlusions and
non-standard body types/poses. Moreover, in order to re-
duce the cost of mocap systems, we would like to employ
fewer cameras which leads to the possibility of joints being
unseen throughout the actions. When the final application is
action classification, it may be possible to classify directly
with fewer joint trajectories, but this suffers from two dis-
advantages: (a) it is impractical to train a classifier for every
combination of unseen joints (b) we can achieve better per-
formance by first reconstructing the complete set of joint
trajectories, exploiting information about the nature of hu-
man actions from a training dataset, and then performing
the classification using a single pretrained classifier. Earlier



works have considered the problem of human action com-
pletion in different ways – human action prediction where
given a few frames of a human action sequence, the future
frames can be predicted employing machine learning algo-
rithms [2], human motion synthesis [7] and editing [10].
There are also traditional methods for human action com-
pletion using k-nearest neighbors from the training set [1],
and matrix factorization methods [8]. More recently, Yang
et al. [32] propose using hand-crafted low-rank and spar-
sity priors to model spatial-temporal correlation for 3D hu-
man motion recovery problems. In this paper, we consider
the problem of predicting complete joint trajectories given
a subset of joints of every frame in the sequence and pro-
pose a deep learning-based solution. Kucherenko et al. [14]
propose feed-forward pass through trained a LSTM autoen-
coder as a way of reconstructing human actions. We use a
baseline similar to this method in our experiments.

2.2. Deep generative priors for inverse problems

Several important problems in imaging can be cast as
ill-posed linear inverse problems. The forward operation
is given by y = Ax, where y ∈ Rm,x ∈ Rn,m < n.
The goal in inverse imaging is to reconstruct x from y
which is generally ill-posed by exploiting structure of the
desired x known apriori. In recent years, the prior knowl-
edge comes in the form of a deep generative model (au-
toencoders, variational autoencoder, generative adversarial
networks etc.). The process of reconstruction reduces to
the problem of finding the closest point on the range space
of the generative model x̂ such that Ax̂ ≈ y. This idea
also has thoretical guarantees as shown by Bora et al. [4]
and Shah and Hegde [24]. Bora et al. [5] showed that, in
some cases, the generative model can also be trained using
the noisy images. Recent papers apply this idea for time-
series imputation [18, 33]. However, these techniques are
shown to work for simpler time-series classification prob-
lems using measurements where some information is avail-
able from all dimensions. In contrast, we consider human
action sequences in which certain joints are completely un-
seen i.e., many dimensions of the time-series are missing.
Thus, interpolation techniques in the time domain are not
applicable. Also, current methods for skeleton completion
are performed frame-wise (such as Kinect), and do not take
dynamics into account, which is the goal of this paper and
necessary for human action recognition.

2.3. Dynamical systems approach to deal with miss-
ing observations

In dynamical systems theory, the notion of reconstruct-
ing high-dimensional state-spaces from low-dimensional
observations has been well-studied for many decades. For
classical state-estimation approaches to apply, one often
needs to make simplifying assumptions for state-dynamics,
such as Markovian and linear dynamics. Such simplifying

assumptions are not always reflective of the complexity of
the task at hand, such as reconstructing human action se-
quences. Another approach is to avoid making such para-
metric assumptions, but use methods from non-linear dy-
namics [17] to estimate surrogate state-spaces. From stan-
dard methods in non-linear dynamics, these surrogate state-
spaces are only topologically equivalent to the true state-
spaces, and do not have enough predictive information for
high-level inference.

3. Reconstructing unseen joint dynamics as an
ill-posed linear inverse problem

Recovering the dynamics of unseen joints is an ill-posed
inverse problem since we only have access to partial infor-
mation of the activity. This can be considered analogous to
the inverse problems in imaging such as super-resolution,
image inpainting or compressive sensing. However, unlike
inverse imaging problems, it is not clear what kinds of pri-
ors work for human actions. We argue that a deep gener-
ative model learned from data on human actions acts as a
good approximation to the space of all possible dynamical
systems for human actions. As a result, we are able to im-
plicitly constrain the dynamics of the recovered actions by
restricting the solution to lie on the action manifold. We
formalize these ideas next.

Let the total number of joints per frame be denoted by
J and the number of frames per action sequence by N .
Each joint is described by its 3D co-ordinates in space.
Thus, by vectorizing, each skeleton can be represented by
3J−dimensional vector and by stacking the N frames in
columns, we represent the human action as a matrix X of
size 3J × N . Let the number of joints observed be K, so
the number of unseen joints is J − K. The measurement
operator A then is a sub-sampling operator which drops
3(J − K) rows of X to give us the observed action Y .
As J − K joints are unseen, there are 3(J − K) rows of
Y which are unknown and we replace them with 0 before
further processing. Given Y , our eventual goal is to clas-
sify the action. As an intermediate step, we first reconstruct
X̂ from Y which is the main focus of this paper. Clearly,
this is an ill-posed linear inverse problem. The advantage
of viewing it as such helps us adapt algorithms designed for
inverse imaging problems such as image inpainting [22],
super-resolution [6, 16] and compressive imaging [15]. In
this paper, we adapt the most recent approaches based on
generative priors [4, 5, 27]. We note that the advantage of
these methods over other methods in inverse imaging such
as purely data-driven approaches [6, 15], and unrolled iter-
ative methods [23, 20, 34] is that there is no requirement of
paired Y and X for training. Thus, once we have a gen-
erative model for human action sequences, the problem of
reconstructing unseen joint dynamics can be solved using
an optimization problem such that the output of the gener-



ative model X̂ is closest (in some predefined sense) to the
test sequence under consideration Y . Next, we describe the
architecture of the generative model we construct.

4. Generative models for human actions
In order to approximate space of human actions, we em-

ploy an autoencoder architecture to construct the genera-
tive model of human action sequences. We choose an au-
toencoder over currently popular generative adversarial net-
works [9] or variational autoencoders [13] because – (1) au-
toencoders are much easier to train compared to the other
frameworks and (2) the purpose of using the generative
model in this paper is to perform reconstruction of test se-
quences rather than sampling new actions, which, as we will
show, can be readily performed using an autoencoder.

4.1. Autoencoder architecture

As the generative model, we employ a temporal convolu-
tional autoencoder. Both the encoder (E) and decoder (D)
consists of a series of 1D convolutional layers operating in
the temporal domain with ReLU non-linearity. After every
convolution, we use average pooling to reduce the number
of frames by half. We then use a fully-connected (FC) layer
which produces the encoded/latent representation of the ac-
tion, denoted by z. The decoder reverses these operations
with a series of transposed convolutional layers. The net-
works are trained using full/complete actions with access to
information of all joint trajectories. The network is trained
to minimize the Euclidean loss between the input sequence
and the output of the decoder:

L(X, X̂) =

N∑
n=1

J∑
j=1

∥∥∥Xn,j − X̂n,j

∥∥∥2
2
, (1)

where Xn,j refers to the jth 3D joint location in the nth

frame of the sequence. Other training details are provided
in the supplementary material. We note that we can add an
additional adversarial loss term to the above loss function
in order to make the actions more realistic [22]. As the main
focus of the paper is designing a completion algorithm, we
include these results in the supplementary material due to
space constraints.

4.2. Training the generative models with partially
observed joint sequences

The generative models in Sections 4.1 are trained using
complete actions with all joint sequences fully observed,
X . However, complete actions may not be available at the
training stage. An important contribution of this paper is
showing that we can construct generative models of human
actions by training solely on action sequences with only a
subset of the joints observed, Y . We later show that this pro-
tocol leads to superior reconstruction compared to training

with full actions. To this end, we modify the loss function
as follows. The forward operator A is the sampling opera-
tor which has the effect of dropping a subset of the joints.
Using the knowledge of A, we use a masked loss function
between the ground-truth measured sequence Y = AX and
the reconstructed sequence X̂ .

L(Y, X̂) =

N∑
n=1

J∑
j=1

∥∥∥Yn,j −AX̂n,j

∥∥∥2
2

(2)

The network architectures and the training protocols are
identical to those trained using fully observed action se-
quences.

5. Reconstruction via approximate projection
onto the action manifold

Once we have the generative model, in our case an au-
toencoder, the training process is complete. The next step
is to use the generative model in order to reconstruct the
trajectories of unseen joints given an incomplete action se-
quence. To this end, we propose to project the incomplete
action to the range space of the generator, which ideally
is the same as the manifold of complete human action se-
quences.

Initialization: Feed-forward pass through the trained
autoencoder As a baseline method, we can simply feed
the incomplete action sequence through the autoencoder
and use the output of the decoder as the reconstruction.
This is likely to fail, especially in the case of the autoen-
coder trained with complete actions. However, in the case of
the autoencoder trained on subsets of joint trajectories, even
this simple method can provide a reasonable reconstructed
sequence. This is used as initialization for the optimization
algorithm below, z(0).

5.1. Optimizing the latent representation

We can further improve the reconstruction quality from
above by directly optimizing the encoded/latent representa-
tion, z, such that the Euclidean distance between the recon-
structed action sequence and the input incomplete sequence.
This method is inspired by Bora et al. [4] where the authors
propose this method for inverse problems in imaging. The
optimization problem is given by

z∗ = argmin
z
‖Y −AD(z)‖22 , X̂ = D(z∗). (3)

We solve this optimization problem using a gradient
descent-type method, As the optimization problem is non-
convex, z∗ is a locally optimal solution. Empirically, we
find that the solutions obtained using this procedure provide
high quality reconstructions.



6. Measuring reconstruction performance

Our main goal in this paper is to recover trajectories of
unseen joints from incomplete human actions. Hence, in
order to evaluate the effectiveness of the proposed methods,
we need to choose proper metrics to compute how well the
reconstructed actions are. We choose the following three
methods for measuring the quality of reconstructed actions.

6.1. Classification performance

An important reason for reconstructing action sequences
is to employ predefined classification pipelines without any
modification. Therefore, we train a single action classifier
on sequences with information of all joints, feed the recon-
structed sequences as test inputs, and use the classification
performance as a metric for quality of reconstructed actions.

Classifier architecture: In all our experiments, we em-
ploy a popular architecture for 3D human action recog-
nition based on temporal convolutional networks (TCNs)
[12]. The classifer consists of a series of temporal convo-
lutional blocks. Each block consists of layers of 1D con-
volutional layers operating in the temporal domain with
ReLU non-linearity. We employ batch normalization for
each layer. Residual connections are employed from one
block to the next. After every block, average pooling is em-
ployed to reduce the number of frames by half. Finally a
fully-connected (FC) layer with softmax is used to map to
a probability distribution over the classes. As there may
be a domain shift between the original actions and the re-
constructed actions from the autoencoder, we train a single
classifier on the reconstructed actions from the autoencoder
trained on complete action sequences. Other training details
are provided in the supplementary material.

Visualization of high-level semantic features: We also
visualize the effectiveness of the reconstructions for down-
stream applications, like classification, with t-SNE embed-
dings in 2D [19]. We use the feature maps of the penulti-
mate layer of the trained classifier.

6.2. Self-similarity matrix

In order to better measure the differences in the dynam-
ics of the reconstructed actions for the baseline and pro-
posed methods compared to the ground-truth, we propose
to use self-similarity matrices (SSMs) [11]. SSMs capture
dynamics better than using just classification accuracy, and
at the same time, can be easily visualized. Once the SSMs
are constructed, we use Euclidean distance between the re-
spective SSMs to measure the difference between ground-
truth and reconstructed actions. That is, for two sequences
X1, X2, the SSM distance is ‖SSM(X1)− SSM(X2)‖2.

SSM(X) ∈ RN×N , SSM(X)i,j = e−‖Xi−Xj‖, where
Xi is the ith frame of X .

7. Datasets and experimental results
7.1. HDM05 mocap dataset [21]

Dataset details: HDM05 is a large publicly available and
challenging database of 3D human actions with 2337 action
samples. There are 130 different types of actions performed
by 5 subjects and recorded in a laboratory setting using an
optical motion capture system. Each skeleton is made up of
31 joints. For our experiments, we resample all the actions
such that the length of the every action sequence N = 100.
Thus X,Y, X̂ ∈ R93×100. All sequences are normalized
so that the hip joint is fixed at the origin in 3D space. We
perform 5-fold cross-validation. For each run, we use 4 sub-
jects for training and the remaining subject for testing with
about 1850 samples for training and the rest for testing.

Network architectures: The encoder consists of 4 tem-
poral convolution layers with filter size of 4, and the num-
ber of feature maps in each layer is set to 75 (equal to the
number of channels at the input layer). We use a latent
space dimension of 200. The decoder consists of 4 temporal
transposed convolutional layers. For our experiments, we
train multiple autoencoders with actions consisting of ran-
dom subsets of joint sequences sampled from the actions.
Different fractions of joints included for training each au-
toencoder: 100%, 90%, 75%, 50%. We will use the term
Observed-to-Total Percentage (OTP) = K

J × 100, to denote
this quantity. For classification, we use a TCN classifier
similar [12]. It consists of 3 TCN blocks with one convolu-
tional layer each.

Reconstruction performance and visualization: A sim-
ple feed-forward pass through the trained autoencoders
(trained with different fractions of observed joints) serves
as a coarse reconstruction and is used as a baseline. As ex-
plained in Section 5.1, using our proposed method, we can
achieve significantly better reconstructions by using an opti-
mization procedure over the latent space of the autoencoder
model in order to minimize the Euclidean distance between
the reconstruction and input test sequence with only a sub-
set of observed joint trajectories. Note that the parameters
of the generative model, the decoder D in our case, are held
fixed for this optimization. We use Adam optimizer for 500
iterations with an initial learning rate of 1.0. As the ini-
tialization, we use the latent representation of the incom-
plete action obtained by a feed-forward pass through the
encoder. We carry out reconstruction experiments on the
test set for autoencoders trained with different fractions of
observed joints.

In order to better test the generalization ability, we use
test-time OTPs that are different from training-time OTPs.



Figure 2: Reconstructed actions for the HDM05 database for train OTP / test OTP = 90/50. From the top row, the actions shown are
“Cartwheel” ,“Hand waving”, “Grab low” and “Throw a basketball”. The first column shows the reconstructions obtained by a simple
feedforward pass through the trained autoencoder: D(E(Y )). The middle column shows the output of the proposed approach which
solves the optimization problem in Equation 3: D(z∗). Blue dots represent the observed joints and red dots represent the unobserved. We
clearly observe that the optimization approach produces superior reconstructions.

For the reconstructed sequences thus obtained, we use a pre-
trained classifier to classify the test set reconstruction into
one of the pre-defined 130 classes for different variants and
test-time OTPs of the autoencoders. The results for recogni-
tion performance are shown in Figure 3a, and a few sample
reconstructed skeletal sequences are shown in Figure 2. We
also compute self similarity matrices (SSMs) for (1) base-
line reconstruction, (2) output of the proposed method and
(3) ground-truth sequences and compute distances between
them. The SSM metrics thus obtained averaged over all the
folds are shown in Figure 5a and visualized in Figure 6a.
Finally, using the penultimate layer output of the classifier,
we compute t-SNE embeddings for (1) autoencoder recon-
structions (2) final reconstruction after optimizing the latent
space, and (3) ground-truth. The results are shown for the
test set of one of the folds in Figure 4.

Results: We observe in all cases where either the train-
ing or test OTP is less than 100%, the proposed method
of solving the optimization problem in Equation (3) i.e., us-
ing D(z∗) leads to significantly better results compared to
using a single feed-forward pass through the autoencoder
i.e., D(E(Y )), where D and E are the decoder and encoder
respectively. In almost all cases, using the optimization ap-
proach yields accuracies within 5% points of the oracle per-
formance. We also observe for the cases with training OTP
= 100%, using a different test OTP causes more degradation

in performance than when the train OTP = 90%, 75%, 50%.
This shows that training the autoencoder with incomplete
action sequences actually leads to performance improve-
ments in classification, attributed to increased robustness of
the classifier, similar to the dropout strategy. We note that
we also compared with two additional simpler baselines:
(1) perform reconstruction of skeletons per frame by replac-
ing every unseen joint with the closest observed joint in the
skeleton, and then use the pre-trained classifier and (2) train
the classifier directly on the action sequences with only a
subset of joints observed. Irrespective of the train/test OTP,
both these baselines fail and yield only accuracies which are
close to chance.

Reconstruction using structured masks: In the above,
we trained and tested autoencoders with random subsets of
joints. In this experiment, we drop joints in a structured
fashion during test time. We carry out four sets of experi-
ments with the joints corresponding to the following body
parts dropped: right arm (6 joints), left arm (6), right leg (4)
and left leg (4). This demonstrates how occlusion of differ-
ent limbs can affect the performance of our algorithm. Note
that the autoencoders were trained on random subsets of
joints, as before. The results are shown in Table 1. We see
once again that the proposed algorithm yields good recog-
nition performance compared to the baselines considered.
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Figure 3: Measuring the performance of recovering dynamic information with classification accuracy for NTU and HDM datasets. We
observe that the proposed optimization-based reconstruction is far superior to a feed-forward pass through the autoencoder (AE). As the
train Observed-to-Total Percentage (OTP) of joints is reduced, performance degrades more gracefully in the case of the optimization-based
approach. In almost all cases, we can get to within 5% points of the oracle performance (train OTP/test OTP = 100/100) “Observed” refers
to passing the observed sequence Y with fewer joints through the classifier. Best viewed in color.
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Figure 4: t-SNE embeddings of the penultimate layer of the ac-
tion classifier for the HDM05 dataset. We see that a lot of semantic
information is lost when the joints are dropped, but can be recov-
ered most effectively with an optimized latent space.

7.2. NTU RGB-D dataset [25]

Dataset details: This is a large database of about 56000
3D skeletal action sequences obtained from Kinect of ac-
tions belonging to 60 classes and performed by 45 subjects.
For each skeleton, 25 joint locations are provided. We re-
sample all the sequences to have N = 50 frames. Thus
X,Y, X̂ ∈ R75×50. We perform the experiments in the
cross-subject setting and use the train-test split as suggested
by the authors of the dataset. The training set consists of
about 40000 examples and the remaining are in the test set.
All sequences are normalized so that the hip is fixed at the
origin in 3D space.

Joints dropped Train OTP Method Accuracy (%)

Right arm
90 D(E(Y )) 50.05

D(z∗) 59.77

75 D(E(Y )) 51.08
D(z∗) 63.79

Left arm
90 D(E(Y )) 54.48

D(z∗) 64.15

75 D(E(Y )) 55.59
D(z∗) 66.54

Right leg 90 D(E(Y )) 57.50
D(z∗) 69.43

Left leg 90 D(E(Y )) 57.97
D(z∗) 66.29

Table 1: Average classification results (over 5 folds) of re-
constructed actions on the HDM05 database. The inputs are
actions with contiguous body parts that are hidden or unob-
served. Here, D(E(Y )) is the baseline and D(z∗) is the
proposed optimization strategy.

Network architectures: The generative mode is a tem-
poral convolutional autoencoder. The encoder consists of
3 temporal convolution layers with filter size of 8, and the
number of feature maps in each layer is set to 75 (equal to
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Figure 5: Evaluating the quality of reconstructions on the two
datasets considered in this paper, in the self-similarity matrix
(SSM) domain for different train-test OTPs. We see a significant
improvement in the proposed method to recover dynamics over the
baseline: a feed-forward pass through the autoencoder.

the number of channels at the input layer). We use a latent
space dimension of 200. The decoder consists of 3 tempo-
ral transposed convolutional layers. As the action classifier,
we use a TCN classifier identical to that proposed by Kim
and Reiter [12]. It consists of 3 TCN blocks with 3 convo-
lutional layers each.

Reconstruction performance: We conduct an identical
set of experiments as in the case of the HDM05 dataset.
The classfication results are shown in Figure 3b and the
SSM-based metrics are shown in Figure 5b and visualized
in Figure 6b. Skeletal visualizations are provided in the
supplement. The trends observed are the same as those in
HDM05. Compared to the baselines of (1) directy passing
the observed sequence through the classifier and (2) using
the autoencoder reconstruction, the proposed method of la-
tent space optimization achieves far superior results espe-
cially when train and test OTPs are considerably different,
and gets close to oracle classification performance and SSM
distances even with just 75% of observed joints.

8. Conclusion

In this paper, we consider the problem of reconstructing
completely unseen dimensions of a multi-variate time se-
ries. The problem is traditionally studied in the framework
of system identification and non-linear dynamics. How-
ever, for tractability, such methods make strong assump-
tions on the data such as linearity of the underlying dy-

Ground
Truth Observed Reconstructed

(a) SSMs for 3 different actions from the HDM dataset [21]

Ground 
Truth

Observed Reconstructed

(b) SSMs for 3 different actions from the NTU dataset [25]

Figure 6: We visualize the dynamics of actions using the self-
similarity matrices (SSMs) on the two datasets. We see that even
though a lot of dynamics are lost in the observed action with miss-
ing joints, the proposed method recovers them effectively.

namical system, sparsity of observations in transform do-
mains etc. In this paper, we consider the specific example
of reconstructing unseen joint dynamics from 3D human ac-
tions, for which we cannot easily construct hand-crafted pri-
ors. Instead, we propose first construct a generative model
of complete actions, even when the training data has up to
50% of the joints missing. The reconstruction problem then
can be solved by projecting the observed action onto the
range of the generative model, which is done via optimiza-
tion in the latent space. Through extensive experiments and
different metrics, we show that the proposed approach can



effectively recover the dynamics of unseen joints. An inter-
esting extension of this idea for human actions is to design
stronger priors using spatio-temporal graph convolutional
autoencoders which can better take into account the skele-
tal graph structure into account for representation learning.
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